解答
積分計算機導関数計算機代数計算機行列計算機もっと...
グラフ作成
折れ線グラフ指数グラフ二次グラフ正弦グラフもっと...
計算機能
BMI計算機複利計算機パーセンテージ計算機加速度計算機もっと...
幾何学
ピタゴラス定理計算機円面積計算機二等辺三角形計算機三角形計算機もっと...
AI Chat
ツール
ノートグループチートシートワークシート練習検証する
ja
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
人気のある 三角関数 >

2sin(2x)cos(x)+sin(x)=0

  • 前代数
  • 代数
  • 前微積分
  • 微分積分
  • 関数
  • 線形代数
  • 三角関数
  • 統計
  • 化学
  • 経済学
  • 換算

解

2sin(2x)cos(x)+sin(x)=0

解

x=2πn,x=π+2πn
+1
度
x=0∘+360∘n,x=180∘+360∘n
解答ステップ
2sin(2x)cos(x)+sin(x)=0
三角関数の公式を使用して書き換える
sin(x)+2cos(x)sin(2x)
2倍角の公式を使用: sin(2x)=2sin(x)cos(x)=sin(x)+2cos(x)⋅2sin(x)cos(x)
2cos(x)⋅2sin(x)cos(x)=4cos2(x)sin(x)
2cos(x)⋅2sin(x)cos(x)
数を乗じる:2⋅2=4=4cos(x)sin(x)cos(x)
指数の規則を適用する: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=4sin(x)cos1+1(x)
数を足す:1+1=2=4sin(x)cos2(x)
=sin(x)+4cos2(x)sin(x)
sin(x)+4cos2(x)sin(x)=0
因数 sin(x)+4cos2(x)sin(x):sin(x)(4cos2(x)+1)
sin(x)+4cos2(x)sin(x)
共通項をくくり出す sin(x)=sin(x)(1+4cos2(x))
sin(x)(4cos2(x)+1)=0
各部分を別個に解くsin(x)=0or4cos2(x)+1=0
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
以下の一般解 sin(x)=0
sin(x)2πn 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
解く x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
4cos2(x)+1=0:解なし
4cos2(x)+1=0
置換で解く
4cos2(x)+1=0
仮定:cos(x)=u4u2+1=0
4u2+1=0:u=i21​,u=−i21​
4u2+1=0
1を右側に移動します
4u2+1=0
両辺から1を引く4u2+1−1=0−1
簡素化4u2=−1
4u2=−1
以下で両辺を割る4
4u2=−1
以下で両辺を割る444u2​=4−1​
簡素化u2=−41​
u2=−41​
x2=f(a) の場合, 解は x=f(a)​,−f(a)​
u=−41​​,u=−−41​​
簡素化 −41​​:i21​
−41​​
累乗根の規則を適用する: −a​=−1​a​−41​​=−1​41​​=−1​41​​
虚数の規則を適用する: −1​=i=i41​​
累乗根の規則を適用する:nba​​=nb​na​​,, 以下を想定 a≥0,b≥041​​=4​1​​=i4​1​​
4​=2
4​
数を因数に分解する:4=22=22​
累乗根の規則を適用する: nan​=a22​=2=2
=i21​​
規則を適用 1​=1=i21​
標準的な複素数形式で i21​ を書き換える:21​i
i21​
分数を乗じる: a⋅cb​=ca⋅b​=21i​
乗算:1i=i=2i​
=21​i
簡素化 −−41​​:−i21​
−−41​​
簡素化 −41​​:i21​​
−41​​
累乗根の規則を適用する: −a​=−1​a​−41​​=−1​41​​=−1​41​​
虚数の規則を適用する: −1​=i=i41​​
累乗根の規則を適用する:nba​​=nb​na​​,, 以下を想定 a≥0,b≥041​​=4​1​​=i4​1​​
4​=2
4​
数を因数に分解する:4=22=22​
累乗根の規則を適用する: nan​=a22​=2=2
=i21​​
=−i21​​
規則を適用 1​=1=−21​i
u=i21​,u=−i21​
代用を戻す u=cos(x)cos(x)=i21​,cos(x)=−i21​
cos(x)=i21​,cos(x)=−i21​
cos(x)=i21​:解なし
cos(x)=i21​
解なし
cos(x)=−i21​:解なし
cos(x)=−i21​
解なし
すべての解を組み合わせる解なし
すべての解を組み合わせるx=2πn,x=π+2πn

グラフ

Sorry, your browser does not support this application
インタラクティブなグラフを表示

人気の例

4cos(x)+1=34cos(x)+1=3solvefor y,x=sqrt(sin(y))solvefory,x=sin(y)​sin(x)+sin(x)cos(x)=0sin(x)+sin(x)cos(x)=0tan(x)= 5/5tan(x)=55​sin(θ)cos(θ)=0sin(θ)cos(θ)=0
勉強ツールAI Math SolverAI Chatワークシート練習チートシート計算機能グラフ作成計算機ジオメトリーカルキュレーターソリューションの検証
アプリSymbolab アプリ (Android)グラフ作成計算機 (Android)練習 (Android)Symbolab アプリ (iOS)グラフ作成計算機 (iOS)練習 (iOS)Chrome拡張機能
会社Symbolabについてブログヘルプ
法務プライバシーService TermsCookieに関するポリシークッキー設定私の個人情報を販売または共有しないでください著作権, コミュニティガイドライン, DSA & その他の法務リソースLearneo法務センター
ソーシャルメディア
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024