Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(x)-sin(2x)=cos(3x)-sin(4x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)−sin(2x)=cos(3x)−sin(4x)

Solution

x=2π​+2πn,x=23π​+2πn,x=2πn,x=π+2πn,x=0.94247…+2πn,x=π−0.94247…+2πn,x=−0.31415…+2πn,x=π+0.31415…+2πn
+1
Degrees
x=90∘+360∘n,x=270∘+360∘n,x=0∘+360∘n,x=180∘+360∘n,x=54∘+360∘n,x=126∘+360∘n,x=−18∘+360∘n,x=198∘+360∘n
Solution steps
cos(x)−sin(2x)=cos(3x)−sin(4x)
Subtract cos(3x)−sin(4x) from both sidescos(x)−sin(2x)−cos(3x)+sin(4x)=0
Rewrite using trig identities
−cos(3x)+cos(x)−sin(2x)+sin(4x)
Use the Sum to Product identity: sin(s)−sin(t)=2sin(2s−t​)cos(2s+t​)=−cos(3x)+cos(x)+2sin(24x−2x​)cos(24x+2x​)
2sin(24x−2x​)cos(24x+2x​)=2sin(x)cos(3x)
2sin(24x−2x​)cos(24x+2x​)
24x−2x​=x
24x−2x​
Add similar elements: 4x−2x=2x=22x​
Divide the numbers: 22​=1=x
=2sin(x)cos(24x+2x​)
24x+2x​=3x
24x+2x​
Add similar elements: 4x+2x=6x=26x​
Divide the numbers: 26​=3=3x
=2sin(x)cos(3x)
=−cos(3x)+cos(x)+2sin(x)cos(3x)
cos(3x)=4cos3(x)−3cos(x)
cos(3x)
Rewrite using trig identities
cos(3x)
Rewrite as=cos(2x+x)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(2x)cos(x)−sin(2x)sin(x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=cos(2x)cos(x)−2sin(x)cos(x)sin(x)
Simplify cos(2x)cos(x)−2sin(x)cos(x)sin(x):cos(x)cos(2x)−2sin2(x)cos(x)
cos(2x)cos(x)−2sin(x)cos(x)sin(x)
2sin(x)cos(x)sin(x)=2sin2(x)cos(x)
2sin(x)cos(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=2cos(x)sin1+1(x)
Add the numbers: 1+1=2=2cos(x)sin2(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
Use the Double Angle identity: cos(2x)=2cos2(x)−1=(2cos2(x)−1)cos(x)−2sin2(x)cos(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
Expand (2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x):4cos3(x)−3cos(x)
(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
=cos(x)(2cos2(x)−1)−2cos(x)(1−cos2(x))
Expand cos(x)(2cos2(x)−1):2cos3(x)−cos(x)
cos(x)(2cos2(x)−1)
Apply the distributive law: a(b−c)=ab−aca=cos(x),b=2cos2(x),c=1=cos(x)2cos2(x)−cos(x)1
=2cos2(x)cos(x)−1cos(x)
Simplify 2cos2(x)cos(x)−1⋅cos(x):2cos3(x)−cos(x)
2cos2(x)cos(x)−1cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
Add the numbers: 2+1=3=2cos3(x)
1⋅cos(x)=cos(x)
1cos(x)
Multiply: 1⋅cos(x)=cos(x)=cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)−2(1−cos2(x))cos(x)
Expand −2cos(x)(1−cos2(x)):−2cos(x)+2cos3(x)
−2cos(x)(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=−2cos(x),b=1,c=cos2(x)=−2cos(x)1−(−2cos(x))cos2(x)
Apply minus-plus rules−(−a)=a=−2⋅1cos(x)+2cos2(x)cos(x)
Simplify −2⋅1⋅cos(x)+2cos2(x)cos(x):−2cos(x)+2cos3(x)
−2⋅1cos(x)+2cos2(x)cos(x)
2⋅1⋅cos(x)=2cos(x)
2⋅1cos(x)
Multiply the numbers: 2⋅1=2=2cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
Add the numbers: 2+1=3=2cos3(x)
=−2cos(x)+2cos3(x)
=−2cos(x)+2cos3(x)
=2cos3(x)−cos(x)−2cos(x)+2cos3(x)
Simplify 2cos3(x)−cos(x)−2cos(x)+2cos3(x):4cos3(x)−3cos(x)
2cos3(x)−cos(x)−2cos(x)+2cos3(x)
Group like terms=2cos3(x)+2cos3(x)−cos(x)−2cos(x)
Add similar elements: 2cos3(x)+2cos3(x)=4cos3(x)=4cos3(x)−cos(x)−2cos(x)
Add similar elements: −cos(x)−2cos(x)=−3cos(x)=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=−(4cos3(x)−3cos(x))+cos(x)+2(4cos3(x)−3cos(x))sin(x)
Simplify −(4cos3(x)−3cos(x))+cos(x)+2(4cos3(x)−3cos(x))sin(x):−4cos3(x)+4cos(x)+8cos3(x)sin(x)−6sin(x)cos(x)
−(4cos3(x)−3cos(x))+cos(x)+2(4cos3(x)−3cos(x))sin(x)
=−(4cos3(x)−3cos(x))+cos(x)+2sin(x)(4cos3(x)−3cos(x))
−(4cos3(x)−3cos(x)):−4cos3(x)+3cos(x)
−(4cos3(x)−3cos(x))
Distribute parentheses=−(4cos3(x))−(−3cos(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=−4cos3(x)+3cos(x)
=−4cos3(x)+3cos(x)+cos(x)+2(4cos3(x)−3cos(x))sin(x)
Expand 2sin(x)(4cos3(x)−3cos(x)):8cos3(x)sin(x)−6sin(x)cos(x)
2sin(x)(4cos3(x)−3cos(x))
Apply the distributive law: a(b−c)=ab−aca=2sin(x),b=4cos3(x),c=3cos(x)=2sin(x)⋅4cos3(x)−2sin(x)⋅3cos(x)
=2⋅4cos3(x)sin(x)−2⋅3sin(x)cos(x)
Simplify 2⋅4cos3(x)sin(x)−2⋅3sin(x)cos(x):8cos3(x)sin(x)−6sin(x)cos(x)
2⋅4cos3(x)sin(x)−2⋅3sin(x)cos(x)
Multiply the numbers: 2⋅4=8=8cos3(x)sin(x)−2⋅3sin(x)cos(x)
Multiply the numbers: 2⋅3=6=8cos3(x)sin(x)−6sin(x)cos(x)
=8cos3(x)sin(x)−6sin(x)cos(x)
=−4cos3(x)+3cos(x)+cos(x)+8cos3(x)sin(x)−6sin(x)cos(x)
Add similar elements: 3cos(x)+cos(x)=4cos(x)=−4cos3(x)+4cos(x)+8cos3(x)sin(x)−6sin(x)cos(x)
=−4cos3(x)+4cos(x)+8cos3(x)sin(x)−6sin(x)cos(x)
4cos(x)−4cos3(x)−6cos(x)sin(x)+8cos3(x)sin(x)=0
Factor 4cos(x)−4cos3(x)−6cos(x)sin(x)+8cos3(x)sin(x):2cos(x)(2−2cos2(x)−3sin(x)+4cos2(x)sin(x))
4cos(x)−4cos3(x)−6cos(x)sin(x)+8cos3(x)sin(x)
Apply exponent rule: ab+c=abacsin(x)cos3(x)=cos(x)cos2(x),cos3(x)=cos(x)cos2(x)=4cos(x)−4cos(x)cos2(x)−6sin(x)cos(x)+8cos(x)cos2(x)
Rewrite 8 as 4⋅2Rewrite −6 as 3⋅2=2⋅2cos(x)+2⋅2cos(x)cos2(x)+3⋅2sin(x)cos(x)+2⋅2⋅2cos(x)cos2(x)
Factor out common term 2cos(x)=2cos(x)(2−2cos2(x)−3sin(x)+4sin(x)cos2(x))
2cos(x)(2−2cos2(x)−3sin(x)+4cos2(x)sin(x))=0
Solving each part separatelycos(x)=0or2−2cos2(x)−3sin(x)+4cos2(x)sin(x)=0
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
2−2cos2(x)−3sin(x)+4cos2(x)sin(x)=0:x=2πn,x=π+2πn,x=arcsin(41+5​​)+2πn,x=π−arcsin(41+5​​)+2πn,x=arcsin(41−5​​)+2πn,x=π+arcsin(−41−5​​)+2πn
2−2cos2(x)−3sin(x)+4cos2(x)sin(x)=0
Rewrite using trig identities
2−2cos2(x)−3sin(x)+4cos2(x)sin(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=2−2(1−sin2(x))−3sin(x)+4(1−sin2(x))sin(x)
Simplify 2−2(1−sin2(x))−3sin(x)+4(1−sin2(x))sin(x):2sin2(x)+sin(x)−4sin3(x)
2−2(1−sin2(x))−3sin(x)+4(1−sin2(x))sin(x)
=2−2(1−sin2(x))−3sin(x)+4sin(x)(1−sin2(x))
Expand −2(1−sin2(x)):−2+2sin2(x)
−2(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=−2,b=1,c=sin2(x)=−2⋅1−(−2)sin2(x)
Apply minus-plus rules−(−a)=a=−2⋅1+2sin2(x)
Multiply the numbers: 2⋅1=2=−2+2sin2(x)
=2−2+2sin2(x)−3sin(x)+4(1−sin2(x))sin(x)
Expand 4sin(x)(1−sin2(x)):4sin(x)−4sin3(x)
4sin(x)(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=4sin(x),b=1,c=sin2(x)=4sin(x)⋅1−4sin(x)sin2(x)
=4⋅1⋅sin(x)−4sin2(x)sin(x)
Simplify 4⋅1⋅sin(x)−4sin2(x)sin(x):4sin(x)−4sin3(x)
4⋅1⋅sin(x)−4sin2(x)sin(x)
4⋅1⋅sin(x)=4sin(x)
4⋅1⋅sin(x)
Multiply the numbers: 4⋅1=4=4sin(x)
4sin2(x)sin(x)=4sin3(x)
4sin2(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin2(x)sin(x)=sin2+1(x)=4sin2+1(x)
Add the numbers: 2+1=3=4sin3(x)
=4sin(x)−4sin3(x)
=4sin(x)−4sin3(x)
=2−2+2sin2(x)−3sin(x)+4sin(x)−4sin3(x)
Simplify 2−2+2sin2(x)−3sin(x)+4sin(x)−4sin3(x):2sin2(x)+sin(x)−4sin3(x)
2−2+2sin2(x)−3sin(x)+4sin(x)−4sin3(x)
Add similar elements: −3sin(x)+4sin(x)=sin(x)=2−2+2sin2(x)+sin(x)−4sin3(x)
2−2=0=2sin2(x)+sin(x)−4sin3(x)
=2sin2(x)+sin(x)−4sin3(x)
=2sin2(x)+sin(x)−4sin3(x)
sin(x)+2sin2(x)−4sin3(x)=0
Solve by substitution
sin(x)+2sin2(x)−4sin3(x)=0
Let: sin(x)=uu+2u2−4u3=0
u+2u2−4u3=0:u=0,u=41+5​​,u=41−5​​
u+2u2−4u3=0
Factor u+2u2−4u3:−u(4u2−2u−1)
u+2u2−4u3
Apply exponent rule: ab+c=abacu2=uu=−4u2u+2uu+u
Factor out common term −u=−u(4u2−2u−1)
−u(4u2−2u−1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u=0or4u2−2u−1=0
Solve 4u2−2u−1=0:u=41+5​​,u=41−5​​
4u2−2u−1=0
Solve with the quadratic formula
4u2−2u−1=0
Quadratic Equation Formula:
For a=4,b=−2,c=−1u1,2​=2⋅4−(−2)±(−2)2−4⋅4(−1)​​
u1,2​=2⋅4−(−2)±(−2)2−4⋅4(−1)​​
(−2)2−4⋅4(−1)​=25​
(−2)2−4⋅4(−1)​
Apply rule −(−a)=a=(−2)2+4⋅4⋅1​
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22+4⋅4⋅1​
Multiply the numbers: 4⋅4⋅1=16=22+16​
22=4=4+16​
Add the numbers: 4+16=20=20​
Prime factorization of 20:22⋅5
20
20divides by 220=10⋅2=2⋅10
10divides by 210=5⋅2=2⋅2⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅5
=22⋅5
=22⋅5​
Apply radical rule: nab​=na​nb​=5​22​
Apply radical rule: nan​=a22​=2=25​
u1,2​=2⋅4−(−2)±25​​
Separate the solutionsu1​=2⋅4−(−2)+25​​,u2​=2⋅4−(−2)−25​​
u=2⋅4−(−2)+25​​:41+5​​
2⋅4−(−2)+25​​
Apply rule −(−a)=a=2⋅42+25​​
Multiply the numbers: 2⋅4=8=82+25​​
Factor 2+25​:2(1+5​)
2+25​
Rewrite as=2⋅1+25​
Factor out common term 2=2(1+5​)
=82(1+5​)​
Cancel the common factor: 2=41+5​​
u=2⋅4−(−2)−25​​:41−5​​
2⋅4−(−2)−25​​
Apply rule −(−a)=a=2⋅42−25​​
Multiply the numbers: 2⋅4=8=82−25​​
Factor 2−25​:2(1−5​)
2−25​
Rewrite as=2⋅1−25​
Factor out common term 2=2(1−5​)
=82(1−5​)​
Cancel the common factor: 2=41−5​​
The solutions to the quadratic equation are:u=41+5​​,u=41−5​​
The solutions areu=0,u=41+5​​,u=41−5​​
Substitute back u=sin(x)sin(x)=0,sin(x)=41+5​​,sin(x)=41−5​​
sin(x)=0,sin(x)=41+5​​,sin(x)=41−5​​
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
sin(x)=41+5​​:x=arcsin(41+5​​)+2πn,x=π−arcsin(41+5​​)+2πn
sin(x)=41+5​​
Apply trig inverse properties
sin(x)=41+5​​
General solutions for sin(x)=41+5​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(41+5​​)+2πn,x=π−arcsin(41+5​​)+2πn
x=arcsin(41+5​​)+2πn,x=π−arcsin(41+5​​)+2πn
sin(x)=41−5​​:x=arcsin(41−5​​)+2πn,x=π+arcsin(−41−5​​)+2πn
sin(x)=41−5​​
Apply trig inverse properties
sin(x)=41−5​​
General solutions for sin(x)=41−5​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(41−5​​)+2πn,x=π+arcsin(−41−5​​)+2πn
x=arcsin(41−5​​)+2πn,x=π+arcsin(−41−5​​)+2πn
Combine all the solutionsx=2πn,x=π+2πn,x=arcsin(41+5​​)+2πn,x=π−arcsin(41+5​​)+2πn,x=arcsin(41−5​​)+2πn,x=π+arcsin(−41−5​​)+2πn
Combine all the solutionsx=2π​+2πn,x=23π​+2πn,x=2πn,x=π+2πn,x=arcsin(41+5​​)+2πn,x=π−arcsin(41+5​​)+2πn,x=arcsin(41−5​​)+2πn,x=π+arcsin(−41−5​​)+2πn
Show solutions in decimal formx=2π​+2πn,x=23π​+2πn,x=2πn,x=π+2πn,x=0.94247…+2πn,x=π−0.94247…+2πn,x=−0.31415…+2πn,x=π+0.31415…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos^2(θ)=2+2sin(θ)cos2(θ)=2+2sin(θ)cos(x)-2cos(x)sin(x)=0cos(x)−2cos(x)sin(x)=02sec^2(x)=02sec2(x)=02cos(3θ)=-12cos(3θ)=−11+sin(2x)=01+sin(2x)=0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024