Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x+pi/3)+cos(x+pi/6)=(sqrt(3))/3

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x+3π​)+cos(x+6π​)=33​​

Solution

x=1.23095…+2πn,x=2π−1.23095…+2πn
+1
Degrees
x=70.52877…∘+360∘n,x=289.47122…∘+360∘n
Solution steps
sin(x+3π​)+cos(x+6π​)=33​​
Rewrite using trig identities
sin(x+3π​)+cos(x+6π​)=33​​
Rewrite using trig identities
sin(x+3π​)
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(x)cos(3π​)+cos(x)sin(3π​)
Simplify sin(x)cos(3π​)+cos(x)sin(3π​):21​sin(x)+23​​cos(x)
sin(x)cos(3π​)+cos(x)sin(3π​)
Simplify cos(3π​):21​
cos(3π​)
Use the following trivial identity:cos(3π​)=21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=21​
=21​sin(x)+sin(3π​)cos(x)
Simplify sin(3π​):23​​
sin(3π​)
Use the following trivial identity:sin(3π​)=23​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=23​​
=21​sin(x)+23​​cos(x)
=21​sin(x)+23​​cos(x)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(x)cos(6π​)−sin(x)sin(6π​)
Simplify cos(x)cos(6π​)−sin(x)sin(6π​):23​​cos(x)−21​sin(x)
cos(x)cos(6π​)−sin(x)sin(6π​)
Simplify cos(6π​):23​​
cos(6π​)
Use the following trivial identity:cos(6π​)=23​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
=23​​cos(x)−sin(6π​)sin(x)
Simplify sin(6π​):21​
sin(6π​)
Use the following trivial identity:sin(6π​)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=23​​cos(x)−21​sin(x)
=23​​cos(x)−21​sin(x)
21​sin(x)+23​​cos(x)+23​​cos(x)−21​sin(x)=33​​
Simplify 21​sin(x)+23​​cos(x)+23​​cos(x)−21​sin(x):3​cos(x)
21​sin(x)+23​​cos(x)+23​​cos(x)−21​sin(x)
Group like terms=21​sin(x)−21​sin(x)+23​​cos(x)+23​​cos(x)
Add similar elements: 23​​cos(x)+23​​cos(x)=3​cos(x)
23​​cos(x)+23​​cos(x)
Factor out common term cos(x)=cos(x)(23​​+23​​)
23​​+23​​=3​
23​​+23​​
Apply rule ca​±cb​=ca±b​=23​+3​​
Factor 3​+3​:23​
3​+3​
Factor out common term 3​=3​(1+1)
Refine=23​
=223​​
Divide the numbers: 22​=1=3​
=3​cos(x)
=21​sin(x)−21​sin(x)+3​cos(x)
Add similar elements: 21​sin(x)−21​sin(x)=0
21​sin(x)−21​sin(x)
Factor out common term sin(x)=sin(x)(21​−21​)
21​−21​=0
21​−21​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=21−1​
Refine=0
=0
=3​cos(x)
33​​=3​1​
33​​
Apply radical rule: 3​=321​=3321​​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=31−21​1​
Subtract the numbers: 1−21​=21​=321​1​
Apply radical rule: 321​=3​=3​1​
3​cos(x)=3​1​
3​cos(x)=3​1​
Subtract 3​1​ from both sides3​cos(x)−3​1​=0
Simplify 3​cos(x)−3​1​:3​3cos(x)−1​
3​cos(x)−3​1​
Convert element to fraction: 3​cos(x)=3​3​cos(x)3​​=3​3​cos(x)3​​−3​1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3​3​cos(x)3​−1​
3​cos(x)3​−1=3cos(x)−1
3​cos(x)3​−1
Apply radical rule: a​a​=a3​3​=3=3cos(x)−1
=3​3cos(x)−1​
3​3cos(x)−1​=0
g(x)f(x)​=0⇒f(x)=03cos(x)−1=0
Move 1to the right side
3cos(x)−1=0
Add 1 to both sides3cos(x)−1+1=0+1
Simplify3cos(x)=1
3cos(x)=1
Divide both sides by 3
3cos(x)=1
Divide both sides by 333cos(x)​=31​
Simplifycos(x)=31​
cos(x)=31​
Apply trig inverse properties
cos(x)=31​
General solutions for cos(x)=31​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(31​)+2πn,x=2π−arccos(31​)+2πn
x=arccos(31​)+2πn,x=2π−arccos(31​)+2πn
Show solutions in decimal formx=1.23095…+2πn,x=2π−1.23095…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

4sin^2(x)cot(x)-3cot(x)=0sin(2x)=-2cos^2(x)cos((2x+3)/2)=-1/21=cot^2(x)+csc(x)sin(θ/2)=(sqrt(3))/2

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(x+pi/3)+cos(x+pi/6)=(sqrt(3))/3 ?

    The general solution for sin(x+pi/3)+cos(x+pi/6)=(sqrt(3))/3 is x=1.23095…+2pin,x=2pi-1.23095…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024