Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

cos(0.2pi)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

cos(0.2π)

Lösung

45​+1​
+1
Dezimale
0.80901…
Schritte zur Lösung
cos(0.2π)
=cos(51​π)
Vereinfache:51​π=5π​
51​π
Multipliziere Brüche: a⋅cb​=ca⋅b​=51π​
Multipliziere: 1π=π=5π​
=cos(5π​)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:45​+1​
cos(5π​)
Zeige dass: cos(5π​)−sin(10π​)=21​
Verwende das folgende Produkt, um die Summe der Identitäten zu finden: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(5π​)sin(10π​)=sin(103π​)−sin(10π​)
Zeige dass: 2cos(5π​)sin(10π​)=21​
Verwende die Doppelwinkelidentität: sin(2x)=2sin(x)cos(x)sin(52π​)=2sin(5π​)cos(5π​)sin(52π​)sin(5π​)=4sin(5π​)sin(10π​)cos(5π​)cos(10π​)
Teile beide Seiten durch sin(5π​)sin(52π​)=4sin(10π​)cos(5π​)cos(10π​)
Verwende die folgenden Identitäten: sin(x)=cos(2π​−x)sin(52π​)=cos(2π​−52π​)cos(2π​−52π​)=4sin(10π​)cos(5π​)cos(10π​)
cos(10π​)=4sin(10π​)cos(5π​)cos(10π​)
Teile beide Seiten durch cos(10π​)1=4sin(10π​)cos(5π​)
Teile beide Seiten durch 221​=2sin(10π​)cos(5π​)
Ersetze 21​=2sin(10π​)cos(5π​)21​=sin(103π​)−sin(10π​)
sin(103π​)=cos(2π​−103π​)21​=cos(2π​−103π​)−sin(10π​)
21​=cos(5π​)−sin(10π​)
Zeige dass: cos(5π​)+sin(10π​)=45​​
Wende die Faktorisierungsregel an: a2−b2=(a+b)(a−b)a=cos(5π​)+sin(10π​)(cos(5π​)+sin(10π​))2−(cos(5π​)−sin(10π​))2=((cos(5π​)+sin(10π​))+(cos(5π​)−sin(10π​)))((cos(5π​)+sin(10π​))−(cos(5π​)−sin(10π​)))
Fasse zusammen(cos(5π​)+sin(10π​))2−(cos(5π​)−sin(10π​))2=2(2cos(5π​)sin(10π​))
Zeige dass: 2cos(5π​)sin(10π​)=21​
Verwende die Doppelwinkelidentität: sin(2x)=2sin(x)cos(x)sin(52π​)=2sin(5π​)cos(5π​)sin(52π​)sin(5π​)=4sin(5π​)sin(10π​)cos(5π​)cos(10π​)
Teile beide Seiten durch sin(5π​)sin(52π​)=4sin(10π​)cos(5π​)cos(10π​)
Verwende die folgenden Identitäten: sin(x)=cos(2π​−x)sin(52π​)=cos(2π​−52π​)cos(2π​−52π​)=4sin(10π​)cos(5π​)cos(10π​)
cos(10π​)=4sin(10π​)cos(5π​)cos(10π​)
Teile beide Seiten durch cos(10π​)1=4sin(10π​)cos(5π​)
Teile beide Seiten durch 221​=2sin(10π​)cos(5π​)
Ersetze 2cos(5π​)sin(10π​)=21​(cos(5π​)+sin(10π​))2−(cos(5π​)−sin(10π​))2=1
Ersetze cos(5π​)−sin(10π​)=21​(cos(5π​)+sin(10π​))2−(21​)2=1
Fasse zusammen(cos(5π​)+sin(10π​))2−41​=1
Füge 41​ zu beiden Seiten hinzu(cos(5π​)+sin(10π​))2−41​+41​=1+41​
Fasse zusammen(cos(5π​)+sin(10π​))2=45​
Ziehe die Quadratwurzel auf beiden Seiten cos(5π​)+sin(10π​)=±45​​
cos(5π​)darf nicht negativ seinsin(10π​)darf nicht negativ seincos(5π​)+sin(10π​)=45​​
Füge die folgenden Gleichungen hinzu cos(5π​)+sin(10π​)=25​​((cos(5π​)+sin(10π​))+(cos(5π​)−sin(10π​)))=(25​​+21​)
Fasse zusammencos(5π​)=45​+1​
=45​+1​
=45​+1​

Beliebte Beispiele

cos((17pi)/9)cos(917π​)sin(1/5 ((5pi)/6))+2sin(51​(65π​))+2arctan(((3sqrt(3))/2)/(3/2))arctan(23​233​​​)cos(arcsin(1/6))cos(arcsin(61​))sec(18)sec(18∘)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024