Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Geometry >

(4x^2-8x)+(9y^2-36y)=-4

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

(4x2−8x)+(9y2−36y)=−4

Solution

(h,k)=(1,2),a=3,b=2
Solution steps
4x2−8x+(9y2−36y)=−4
Rewrite 4x2−8x+(9y2−36y)=−4in the form of the standard ellipse equation
32(x−1)2​+22(y−2)2​=1
Therefore ellipse properties are:(h,k)=(1,2),a=3,b=2
a>btherefore ais semi-major axis and bis semi-minor axisEllipsewithcenter(h,k)=(1,2),a=3,b=2

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2=x^2+4y^2(x^2)/(1^2)+(y^2)/(sqrt(0.4375)^2)=122x^2+66y^2+60x+4y-9=0x^2+2y^2-5=1(x^2)/(841)+(y^2)/(484)=1

Frequently Asked Questions (FAQ)

  • What is (4x^2-8x)+(9y^2-36y)=-4 ?

    The solution to (4x^2-8x)+(9y^2-36y)=-4 is Ellipse with (h,k)=(1,2),a=3,b=2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024