Trigonometry Cheat Sheet
		
		 
													
	
		\tan(x) = \frac{\sin(x)}{\cos(x)}  
		\tan(x) = \frac{1}{\cot(x)}
	
	
		\cot(x) = \frac{1}{\tan(x)}  
		\cot(x) = \frac{\cos(x)}{\sin(x)}
	
	
		\sec(x) = \frac{1}{\cos(x)} 
		\csc(x) = \frac{1}{\sin(x)}
	
 
	
		\cos^2(x)+\sin^2(x) = 1  
		\sec^2(x)-\tan^2(x) = 1
	
	
		\csc^2(x)-\cot^2(x) = 1
	
 
	
		\sin(2x)=2\sin(x)\cos(x)
		\cos(2x)=1-2\sin^2(x)
	
	
		\cos(2x) = 2\cos^2(x)-1
		\cos(2x) = \cos^2(x)-\sin^2(x)
	
	
		\tan(2x) = \frac{2\tan(x)}{1-\tan^2(x)}
	
 
	
		\sin(s+t) = \sin(s)\cos(t)+\cos(s)\sin(t)
	
	
		\sin(s-t) = \sin(s)\cos(t)-\cos(s)\sin(t) 
	
	
		\cos(s+t) = \cos(s)\cos(t)-\sin(s)\sin(t)
	
	
		\cos(s-t) = \cos(s)\cos(t)+\sin(s)\sin(t)  
	
	
		\tan(s+t) = \frac{\tan(s)+\tan(t)}{1-\tan(s)\tan(t)}   
	
	
		\tan(s-t) = \frac{\tan(s)-\tan(t)}{1+\tan(s)\tan(t)}
	
 
	
		\cos(s)\cos(t)=\frac{\cos(s-t)+\cos(s+t)}{2}
	
	
		\sin(s)\sin(t)=\frac{\cos(s-t)-\cos(s+t)}{2}
	
	
		\sin(s)\cos(t)=\frac{\sin(s+t)+\sin(s-t)}{2}
	
	
		\cos(s)\sin(t)=\frac{\sin(s+t)-\sin(s-t)}{2}
	
 
	
		\sin(3x)=-\sin^3(x)+3\cos^2(x)\sin(x)  
	
	
		\sin(3x)=-4\sin^3(x)+3\sin(x)
	
	
		\cos(3x)=\cos^3(x)-3\sin^2(x)\cos(x)
	
	
		\cos(3x)=4\cos^3(x)-3\cos(x)
	
	
		\tan(3x)=\frac{3\tan(x)-\tan^3(x)}{1-3\tan^2(x)}
	
	
		\cot(3x)=\frac{3\cot(x)-\cot^3(x)}{1-3\cot^2(x)}
	
 
	
		y = \sin(x)  
		-1\le y\le 1
	
	
		y = \cos(x)
		-1\le y\le 1
	
	
		y = \tan(x)
		 -\infty < y <\infty   
	
	
		y = \cot(x)  
		-\infty < y <\infty 
	
	
		y = \csc(x)
		-\infty < y\le -1\:\bigcup \:1\le y < \infty  
	
	
		y = \sec(y)
		 -\infty < y\le -1\:\bigcup \:1\le y < \infty 
	
	
		y = \arcsin(x)  
		-\frac{\pi \:}{2}\:\le y\le \:\:\frac{\pi \:}{2}\:
	
	
		y = \arccos(x)
		0\:\le \:y\:\le \:\pi 
	
	
		y = \arctan(x)
		-\frac{\pi \:}{2} < \:y < \frac{\pi \:}{2}: 
	
	
		y = \arccot(x)  
		0 < x < \pi
	
	
		y = \arccsc(x)
		0\le y <\frac{\pi }{2}\:\bigcup \:\pi\le y <\frac{3\pi }{2} 
	
	
		y = \arcsec(x)
		 -\pi < y\le -\frac{\pi }{2}\:\bigcup \:0 < y < \frac{\pi }{2}<\infty 
	
 
	
		 
		sin(x)
		cos(x)
		tan(x)
		cot(x)
	
	
		0
		0
		1
		0
		\mathrm{Undefined}
	
	
		\frac{π}{6}
		\frac{1}{2}
		\frac{\sqrt{3}}{2}
		\frac{\sqrt{3}}{3}
		\sqrt{3}
	
	
		\frac{π}{4}
		\frac{\sqrt{2}}{2}
		\frac{\sqrt{2}}{2}
		1
		1
	
	
		\frac{π}{3}
		\frac{\sqrt{3}}{2}
		\frac{1}{2}
		\sqrt{3}
		\frac{\sqrt{3}}{3}
	
	
		\frac{π}{2}
		1
		0
		\mathrm{Undefined}
		0
	
	
		\frac{2π}{3}
		\frac{\sqrt{3}}{2}
		-\frac{1}{2}
		-\sqrt{3}
		-\frac{\sqrt{3}}{3}
	
	
		\frac{3π}{4}
		\frac{\sqrt{2}}{2}
		-\frac{\sqrt{2}}{2}
		-1
		-1
	
	
		\frac{5π}{6}
		\frac{1}{2}
		-\frac{\sqrt{3}}{2}
		-\frac{\sqrt{3}}{3}
		-\sqrt{3}
	
	
		π
		0
		-1
		0
		\mathrm{Undefined}
	
	
		\frac{7π}{6}
		-\frac{1}{2}
		-\frac{\sqrt{3}}{2}
		\frac{\sqrt{3}}{3}
		\sqrt{3}
	
	
		\frac{5π}{4}
		-\frac{\sqrt{2}}{2}
		-\frac{\sqrt{2}}{2}
		1
		1
	
	
		\frac{4π}{3}
		-\frac{\sqrt{3}}{2}
		-\frac{1}{2}
		\sqrt{3}
		\frac{\sqrt{3}}{3}
	
	
		\frac{3π}{2}
		-1
		0
		\mathrm{Undefined}
		0
	
	
		\frac{5π}{3}
		-\frac{\sqrt{3}}{2}
		\frac{1}{2}
		-\sqrt{3}
		-\frac{\sqrt{3}}{3}
	
	
		\frac{7π}{4}
		-\frac{\sqrt{2}}{2}
		\frac{\sqrt{2}}{2}
		-1
		-1
	
	
		\frac{11π}{6}
		-\frac{1}{2}
		\frac{\sqrt{3}}{2}
		-\frac{\sqrt{3}}{3}
		-\sqrt{3}
	
	
		2π
		0
		1
		0
		\mathrm{Undefined}
	
 
				
        
			