Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
  • Physics
  • Chemistry
  • Math
  • Statistics
  • Geometry
  • Finance
  • Personal Finance
  • Sales
  • Fitness
  • Cooking
  • Date Time
  • Other
  • Construction
  • Converters
  • Calculator > Statistics > Standard Deviation Calculator

    Standard Deviation Calculator

    Standard Deviation Calculator

    Standard Deviation AboutFAQRelated

    About Standard Deviation Calculator

    A standard deviation calculator is used to compute the dispersion or variability of a set of data points from their mean (average). It takes a dataset as input and calculates the standard deviation, which provides insight into how individual data points deviate from the mean. The standard deviation is a measure of the spread of data and quantifies the extent to which data values are clustered or dispersed around the mean. A higher standard deviation indicates greater variability, while a lower standard deviation suggests that the data points are closer to the mean.

    Frequently Asked Questions (FAQ)

    How do I calculate standard deviation of a population?

    To calculate the standard deviation of a population, first compute the mean of the population data. Then, for each data point, subtract the mean, square the result, sum up the squared differences, divide by the total population size, and finally, take the square root of the result.

    How do I calculate standard deviation of a sample?

    To calculate the standard deviation of a sample, first compute the mean of the sample data. Then, for each data point, subtract the mean, square the result, sum up the squared differences, divide by the sample size minus 1, and finally, take the square root of the result.

    What is the standard deviation?

    Standard deviation is a statistical measure that quantifies the dispersion or spread of a set of data points around the mean. A larger standard deviation indicates greater variability, while a smaller standard deviation suggests that the data points are closer to the mean.

    What are the uses of standard deviation?

    Standard deviation is used to assess the variability or dispersion of data, helping to understand how closely data points cluster around the mean. It is essential in fields such as finance for risk assessment, in quality control to monitor production consistency, and in research to analyze the reliability of experimental results.

    Related Calculators

    Average CalculatorMean Median Mode CalculatorP-value CalculatorZ-score CalculatorStandard Deviation Calculator
    Standard Deviation AboutFAQRelated
    Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
    AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
    CompanyAbout SymbolabBlogHelp
    LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
    Social Media
    Symbolab, a Learneo, Inc. business
    © Learneo, Inc. 2024