We've updated our
Privacy Policy effective December 15. Please read our updated Privacy Policy and tap

Study Guides > MTH 163, Precalculus

Solutions

Solutions to Try Its

1. The path passes through the origin and has vertex at [latex]\left(-4,\text{ }7\right)\\[/latex], so [latex]\left(h\right)x=-\frac{7}{16}{\left(x+4\right)}^{2}+7\\[/latex]. To make the shot, [latex]h\left(-7.5\right)\\[/latex] would need to be about 4 but [latex]h\left(-7.5\right)\approx 1.64\\[/latex]; he doesn’t make it. 2. [latex]g\left(x\right)={x}^{2}-6x+13\\[/latex] in general form; [latex]g\left(x\right)={\left(x - 3\right)}^{2}+4\\[/latex] in standard form 3. The domain is all real numbers. The range is [latex]f\left(x\right)\ge \frac{8}{11}\\[/latex], or [latex]\left[\frac{8}{11},\infty \right)\\[/latex]. 4. y-intercept at (0, 13), No x-intercepts 5. a. 3 seconds  b. 256 feet  c. 7 seconds

Solutions to Odd-Numbered Exercises

1. When written in that form, the vertex can be easily identified. 3. If [latex]a=0\\[/latex] then the function becomes a linear function. 5. If possible, we can use factoring. Otherwise, we can use the quadratic formula. 7. [latex]f\left(x\right)={\left(x+1\right)}^{2}-2\\[/latex], Vertex [latex]\left(-1,-4\right)\\[/latex] 9. [latex]f\left(x\right)={\left(x+\frac{5}{2}\right)}^{2}-\frac{33}{4}\\[/latex], Vertex [latex]\left(-\frac{5}{2},-\frac{33}{4}\right)\\[/latex] 11. [latex]f\left(x\right)=3{\left(x - 1\right)}^{2}-12\\[/latex], Vertex [latex]\left(1,-12\right)\\[/latex] 13. [latex]f\left(x\right)=3{\left(x-\frac{5}{6}\right)}^{2}-\frac{37}{12}\\[/latex], Vertex [latex]\left(\frac{5}{6},-\frac{37}{12}\right)\\[/latex] 15. Minimum is [latex]-\frac{17}{2}\\[/latex] and occurs at [latex]\frac{5}{2}\\[/latex]. Axis of symmetry is [latex]x=\frac{5}{2}\\[/latex]. 17. Minimum is [latex]-\frac{17}{16}\\[/latex] and occurs at [latex]-\frac{1}{8}\\[/latex]. Axis of symmetry is [latex]x=-\frac{1}{8}\\[/latex]. 19. Minimum is [latex]-\frac{7}{2}\\[/latex] and occurs at –3. Axis of symmetry is [latex]x=-3\\[/latex]. 21. Domain is [latex]\left(-\infty ,\infty \right)\\[/latex]. Range is [latex]\left[2,\infty \right)\\[/latex]. 23. Domain is [latex]\left(-\infty ,\infty \right)\\[/latex]. Range is [latex]\left[-5,\infty \right)\\[/latex]. 25. Domain is [latex]\left(-\infty ,\infty \right)\\[/latex]. Range is [latex]\left[-12,\infty \right)\\[/latex]. 27. [latex]\left\{2i\sqrt{2},-2i\sqrt{2}\right\}\\[/latex] 29. [latex]\left\{3i\sqrt{3},-3i\sqrt{3}\right\}\\[/latex] 31. [latex]\left\{2+i,2-i\right\}\\[/latex] 33. [latex]\left\{2+3i,2 - 3i\right\}\\[/latex] 35. [latex]\left\{5+i,5-i\right\}\\[/latex] 37. [latex]\left\{2+2\sqrt{6}, 2 - 2\sqrt{6}\right\}\\[/latex] 39. [latex]\left\{-\frac{1}{2}+\frac{3}{2}i, -\frac{1}{2}-\frac{3}{2}i\right\}\\[/latex] 41. [latex]\left\{-\frac{3}{5}+\frac{1}{5}i, -\frac{3}{5}-\frac{1}{5}i\right\}\\[/latex] 43. [latex]\left\{-\frac{1}{2}+\frac{1}{2}i\sqrt{7}, -\frac{1}{2}-\frac{1}{2}i\sqrt{7}\right\}\\[/latex] 45. [latex]f\left(x\right)={x}^{2}-4x+4\\[/latex] 47. [latex]f\left(x\right)={x}^{2}+1\\[/latex] 49. [latex]f\left(x\right)=\frac{6}{49}{x}^{2}+\frac{60}{49}x+\frac{297}{49}\\[/latex] 51. [latex]f\left(x\right)=-{x}^{2}+1\\[/latex] 53. Vertex [latex]\left(1,\text{ }-1\right)\\[/latex], Axis of symmetry is [latex]x=1\\[/latex]. Intercepts are [latex]\left(0,0\right), \left(2,0\right)\\[/latex]. Graph of f(x) = x^2-2x 55. Vertex [latex]\left(\frac{5}{2},\frac{-49}{4}\right)\\[/latex], Axis of symmetry is [latex]\left(0,-6\right),\left(-1,0\right),\left(6,0\right)\\[/latex]. Graph of f(x)x^2-5x-6 57. Vertex [latex]\left(\frac{5}{4}, -\frac{39}{8}\right)\\[/latex], Axis of symmetry is [latex]x=\frac{5}{4}\\[/latex]. Intercepts are [latex]\left(0, -8\right)\\[/latex]. Graph of f(x)=-2x^2+5x-8 59. [latex]f\left(x\right)={x}^{2}-4x+1\\[/latex] 61. [latex]f\left(x\right)=-2{x}^{2}+8x - 1\\[/latex] 63. [latex]f\left(x\right)=\frac{1}{2}{x}^{2}-3x+\frac{7}{2}\\[/latex] 65. [latex]f\left(x\right)={x}^{2}+1\\[/latex] 67. [latex]f\left(x\right)=2-{x}^{2}\\[/latex] 69. [latex]f\left(x\right)=2{x}^{2}\\[/latex] 71. The graph is shifted up or down (a vertical shift). 73. 50 feet 75. Domain is [latex]\left(-\infty ,\infty \right)\\[/latex]. Range is [latex]\left[-2,\infty \right)\\[/latex]. 77. Domain is [latex]\left(-\infty ,\infty \right)\\[/latex] Range is [latex]\left(-\infty ,11\right]\\[/latex]. 79. [latex]f\left(x\right)=2{x}^{2}-1\\[/latex] 81. [latex]f\left(x\right)=3{x}^{2}-9\\[/latex] 83. [latex]f\left(x\right)=5{x}^{2}-77\\[/latex] 85. 50 feet by 50 feet. Maximize [latex]f\left(x\right)=-{x}^{2}+100x\\[/latex]. 87. 125 feet by 62.5 feet. Maximize [latex]f\left(x\right)=-2{x}^{2}+250x\\[/latex]. 89. 6 and –6; product is –36; maximize [latex]f\left(x\right)={x}^{2}+12x\\[/latex]. 91. 2909.56 meters 93. $10.70

Licenses & Attributions

CC licensed content, Shared previously

  • Precalculus. Provided by: OpenStax Authored by: Jay Abramson, et al.. Located at: https://openstax.org/books/precalculus/pages/1-introduction-to-functions. License: CC BY: Attribution. License terms: Download For Free at : http://cnx.org/contents/[email protected]..