Section Exercises
1. Explain the advantage of writing a quadratic function in standard form. 2. How can the vertex of a parabola be used in solving real world problems? 3. Explain why the condition of [latex]a\ne 0\\[/latex] is imposed in the definition of the quadratic function. 4. What is another name for the standard form of a quadratic function? 5. What two algebraic methods can be used to find the horizontal intercepts of a quadratic function? For the following exercises, rewrite the quadratic functions in standard form and give the vertex. 6. [latex]f\left(x\right)={x}^{2}-12x+32\\[/latex] 7. [latex]g\left(x\right)={x}^{2}+2x - 3\\[/latex] 8. [latex]f\left(x\right)={x}^{2}-x\\[/latex] 9. [latex]f\left(x\right)={x}^{2}+5x - 2\\[/latex] 10. [latex]h\left(x\right)=2{x}^{2}+8x - 10\\[/latex] 11. [latex]k\left(x\right)=3{x}^{2}-6x - 9\\[/latex] 12. [latex]f\left(x\right)=2{x}^{2}-6x\\[/latex] 13. [latex]f\left(x\right)=3{x}^{2}-5x - 1\\[/latex] For the following exercises, determine whether there is a minimum or maximum value to each quadratic function. Find the value and the axis of symmetry. 14. [latex]y\left(x\right)=2{x}^{2}+10x+12\\[/latex] 15. [latex]f\left(x\right)=2{x}^{2}-10x+4\\[/latex] 16. [latex]f\left(x\right)=-{x}^{2}+4x+3\\[/latex] 17. [latex]f\left(x\right)=4{x}^{2}+x - 1\\[/latex] 18. [latex]h\left(t\right)=-4{t}^{2}+6t - 1\\[/latex] 19. [latex]f\left(x\right)=\frac{1}{2}{x}^{2}+3x+1\\[/latex] 20. [latex]f\left(x\right)=-\frac{1}{3}{x}^{2}-2x+3\\[/latex] For the following exercises, determine the domain and range of the quadratic function. 21. [latex]f\left(x\right)={\left(x - 3\right)}^{2}+2\\[/latex] 22. [latex]f\left(x\right)=-2{\left(x+3\right)}^{2}-6\\[/latex] 23. [latex]f\left(x\right)={x}^{2}+6x+4\\[/latex] 24. [latex]f\left(x\right)=2{x}^{2}-4x+2\\[/latex] 25. [latex]k\left(x\right)=3{x}^{2}-6x - 9\\[/latex] For the following exercises, solve the equations over the complex numbers. 26. [latex]{x}^{2}=-25\\[/latex] 27. [latex]{x}^{2}=-8\\[/latex] 28. [latex]{x}^{2}+36=0\\[/latex] 29. [latex]{x}^{2}+27=0\\[/latex] 30. [latex]{x}^{2}+2x+5=0\\[/latex] 31. [latex]{x}^{2}-4x+5=0\\[/latex] 32. [latex]{x}^{2}+8x+25=0\\[/latex] 33. [latex]{x}^{2}-4x+13=0\\[/latex] 34. [latex]{x}^{2}+6x+25=0\\[/latex] 35. [latex]{x}^{2}-10x+26=0\\[/latex] 36. [latex]{x}^{2}-6x+10=0\\[/latex] 37. [latex]x\left(x - 4\right)=20\\[/latex] 38. [latex]x\left(x - 2\right)=10\\[/latex] 39. [latex]2{x}^{2}+2x+5=0\\[/latex] 40. [latex]5{x}^{2}-8x+5=0\\[/latex] 41. [latex]5{x}^{2}+6x+2=0\\[/latex] 42. [latex]2{x}^{2}-6x+5=0\\[/latex] 43. [latex]{x}^{2}+x+2=0\\[/latex] 44. [latex]{x}^{2}-2x+4=0\\[/latex] For the following exercises, use the vertex (h, k) and a point on the graph (x, y) to find the general form of the equation of the quadratic function. 45. [latex]\left(h,k\right)=\left(2,0\right),\left(x,y\right)=\left(4,4\right)\\[/latex] 46. [latex]\left(h,k\right)=\left(-2,-1\right),\left(x,y\right)=\left(-4,3\right)\\[/latex] 47. [latex]\left(h,k\right)=\left(0,1\right),\left(x,y\right)=\left(2,5\right)\\[/latex] 48. [latex]\left(h,k\right)=\left(2,3\right),\left(x,y\right)=\left(5,12\right)\\[/latex] 49. [latex]\left(h,k\right)=\left(-5,3\right),\left(x,y\right)=\left(2,9\right)\\[/latex] 50. [latex]\left(h,k\right)=\left(3,2\right),\left(x,y\right)=\left(10,1\right)\\[/latex] 51. [latex]\left(h,k\right)=\left(0,1\right),\left(x,y\right)=\left(1,0\right)\\[/latex] 52. [latex]\left(h,k\right)=\left(1,0\right),\left(x,y\right)=\left(0,1\right)\\[/latex] For the following exercises, sketch a graph of the quadratic function and give the vertex, axis of symmetry, and intercepts. 53. [latex]f\left(x\right)={x}^{2}-2x\\[/latex] 54. [latex]f\left(x\right)={x}^{2}-6x - 1\\[/latex] 55. [latex]f\left(x\right)={x}^{2}-5x - 6\\[/latex] 56. [latex]f\left(x\right)={x}^{2}-7x+3\\[/latex] 57. [latex]f\left(x\right)=-2{x}^{2}+5x - 8\\[/latex] 58. [latex]f\left(x\right)=4{x}^{2}-12x - 3\\[/latex] For the following exercises, write the equation for the graphed function. 59.





x | –2 | –1 | 0 | 1 | 2 |
y | 5 | 2 | 1 | 2 | 5 |
x | –2 | –1 | 0 | 1 | 2 |
y | 1 | 0 | 1 | 4 | 9 |
x | –2 | –1 | 0 | 1 | 2 |
y | –2 | 1 | 2 | 1 | –2 |
x | –2 | –1 | 0 | 1 | 2 |
y | –8 | –3 | 0 | 1 | 0 |
x | –2 | –1 | 0 | 1 | 2 |
y | 8 | 2 | 0 | 2 | 8 |
Licenses & Attributions
CC licensed content, Shared previously
- Precalculus. Provided by: OpenStax Authored by: Jay Abramson, et al.. Located at: https://openstax.org/books/precalculus/pages/1-introduction-to-functions. License: CC BY: Attribution. License terms: Download For Free at : http://cnx.org/contents/[email protected]..