Section Exercises
1. What is the difference between an x-intercept and a zero of a polynomial function f? 2. If a polynomial function of degree n has n distinct zeros, what do you know about the graph of the function? 3. Explain how the Intermediate Value Theorem can assist us in finding a zero of a function. 4. Explain how the factored form of the polynomial helps us in graphing it. 5. If the graph of a polynomial just touches the x-axis and then changes direction, what can we conclude about the factored form of the polynomial? For the following exercises, find the x- or t-intercepts of the polynomial functions. 6. [latex]C\left(t\right)=2\left(t - 4\right)\left(t+1\right)\left(t - 6\right)\\[/latex] 7. [latex]C\left(t\right)=3\left(t+2\right)\left(t - 3\right)\left(t+5\right)\\[/latex] 8. [latex]C\left(t\right)=4t{\left(t - 2\right)}^{2}\left(t+1\right)\\[/latex] 9. [latex]C\left(t\right)=2t\left(t - 3\right){\left(t+1\right)}^{2}\\[/latex] 10. [latex]C\left(t\right)=2{t}^{4}-8{t}^{3}+6{t}^{2}\\[/latex] 11. [latex]C\left(t\right)=4{t}^{4}+12{t}^{3}-40{t}^{2}\\[/latex] 12. [latex]f\left(x\right)={x}^{4}-{x}^{2}\\[/latex] 13. [latex]f\left(x\right)={x}^{3}+{x}^{2}-20x\\[/latex] 14. [latex]f\left(x\right)={x}^{3}+6{x}^{2}-7x\\[/latex] 15. [latex]f\left(x\right)={x}^{3}+{x}^{2}-4x - 4\\[/latex] 16. [latex]f\left(x\right)={x}^{3}+2{x}^{2}-9x - 18\\[/latex] 17. [latex]f\left(x\right)=2{x}^{3}-{x}^{2}-8x+4\\[/latex] 18. [latex]f\left(x\right)={x}^{6}-7{x}^{3}-8\\[/latex] 19. [latex]f\left(x\right)=2{x}^{4}+6{x}^{2}-8\\[/latex] 20. [latex]f\left(x\right)={x}^{3}-3{x}^{2}-x+3\\[/latex] 21. [latex]f\left(x\right)={x}^{6}-2{x}^{4}-3{x}^{2}\\[/latex] 22. [latex]f\left(x\right)={x}^{6}-3{x}^{4}-4{x}^{2}\\[/latex] 23. [latex]f\left(x\right)={x}^{5}-5{x}^{3}+4x\\[/latex] For the following exercises, use the Intermediate Value Theorem to confirm that the given polynomial has at least one zero within the given interval. 24. [latex]f\left(x\right)={x}^{3}-9x\\[/latex], between [latex]x=-4\\[/latex] and [latex]x=-2\\[/latex]. 25. [latex]f\left(x\right)={x}^{3}-9x\\[/latex], between [latex]x=2\\[/latex] and [latex]x=4\\[/latex]. 26. [latex]f\left(x\right)={x}^{5}-2x\\[/latex], between [latex]x=1\\[/latex] and [latex]x=2\\[/latex]. 27. [latex]f\left(x\right)=-{x}^{4}+4\\[/latex], between [latex]x=1\\[/latex] and [latex]x=3\\[/latex]. 28. [latex]f\left(x\right)=-2{x}^{3}-x\\[/latex], between [latex]x=-1\\[/latex] and [latex]x=1\\[/latex]. 29. [latex]f\left(x\right)={x}^{3}-100x+2\\[/latex], between [latex]x=0.01\\[/latex] and [latex]x=0.1\\[/latex] For the following exercises, find the zeros and give the multiplicity of each. 30. [latex]f\left(x\right)={\left(x+2\right)}^{3}{\left(x - 3\right)}^{2}\\[/latex] 31. [latex]f\left(x\right)={x}^{2}{\left(2x+3\right)}^{5}{\left(x - 4\right)}^{2}\\[/latex] 32. [latex]f\left(x\right)={x}^{3}{\left(x - 1\right)}^{3}\left(x+2\right)\\[/latex] 33. [latex]f\left(x\right)={x}^{2}\left({x}^{2}+4x+4\right)\\[/latex] 34. [latex]f\left(x\right)={\left(2x+1\right)}^{3}\left(9{x}^{2}-6x+1\right)\\[/latex] 35. [latex]f\left(x\right)={\left(3x+2\right)}^{5}\left({x}^{2}-10x+25\right)\\[/latex] 36. [latex]f\left(x\right)=x\left(4{x}^{2}-12x+9\right)\left({x}^{2}+8x+16\right)\\[/latex] 37. [latex]f\left(x\right)={x}^{6}-{x}^{5}-2{x}^{4}\\[/latex] 38. [latex]f\left(x\right)=3{x}^{4}+6{x}^{3}+3{x}^{2}\\[/latex] 39. [latex]f\left(x\right)=4{x}^{5}-12{x}^{4}+9{x}^{3}\\[/latex] 40. [latex]f\left(x\right)=2{x}^{4}\left({x}^{3}-4{x}^{2}+4x\right)\\[/latex] 41. [latex]f\left(x\right)=4{x}^{4}\left(9{x}^{4}-12{x}^{3}+4{x}^{2}\right)\\[/latex] For the following exercises, graph the polynomial functions. Note x- and y-intercepts, multiplicity, and end behavior. 42. [latex]f\left(x\right)={\left(x+3\right)}^{2}\left(x - 2\right)\\[/latex] 43. [latex]g\left(x\right)=\left(x+4\right){\left(x - 1\right)}^{2}\\[/latex] 44. [latex]h\left(x\right)={\left(x - 1\right)}^{3}{\left(x+3\right)}^{2}\\[/latex] 45. [latex]k\left(x\right)={\left(x - 3\right)}^{3}{\left(x - 2\right)}^{2}\\[/latex] 46. [latex]m\left(x\right)=-2x\left(x - 1\right)\left(x+3\right)\\[/latex] 47. [latex]n\left(x\right)=-3x\left(x+2\right)\left(x - 4\right)\\[/latex] For the following exercises, use the graphs to write the formula for a polynomial function of least degree. 48.











Licenses & Attributions
CC licensed content, Shared previously
- Precalculus. Provided by: OpenStax Authored by: Jay Abramson, et al.. Located at: https://openstax.org/books/precalculus/pages/1-introduction-to-functions. License: CC BY: Attribution. License terms: Download For Free at : http://cnx.org/contents/[email protected]..