Functions Practice Test
For the following exercises, determine whether each of the following relations is a function. 1. y = 2x + 8 2. [latex]\left\{\left(2,1\right),\left(3,2\right),\left(-1,1\right),\left(0,-2\right)\right\}\\[/latex] For the following exercises, evaluate the function [latex]f\left(x\right)=-3{x}^{2}+2x\\[/latex] at the given input. 3. [latex]f\left(-2\right)\\[/latex] 4. [latex]f\left(a\right)\\[/latex] 5. Show that the function [latex]f\left(x\right)=-2{\left(x - 1\right)}^{2}+3\\[/latex] is not one-to-one. 6. Write the domain of the function [latex]f\left(x\right)=\sqrt{3-x}\\[/latex] in interval notation. 7. Given [latex]f\left(x\right)=2{x}^{2}-5x\\[/latex], find [latex]f\left(a+1\right)-f\left(1\right)\\[/latex]. 8. Graph the function [latex]\begin{cases}f\left(x\right) & =x+1 & \text{ if }-2 < x < 3 \\ \text{ }& =-x & \text{ if }x\ge 3\end{cases}\\[/latex] 9. Find the average rate of change of the function [latex]f\left(x\right)=3 - 2{x}^{2}+x\\[/latex] by finding [latex]\frac{f\left(b\right)-f\left(a\right)}{b-a}\\[/latex]. For the following exercises, use the functions [latex]f\left(x\right)=3 - 2{x}^{2}+x\text{ and }g\left(x\right)=\sqrt{x}\\[/latex] to find the composite functions. 10. [latex]\left(g\circ f\right)\left(x\right)\\[/latex] 11. [latex]\left(g\circ f\right)\left(1\right)\\[/latex] 12. Express [latex]H\left(x\right)=\sqrt[3]{5{x}^{2}-3x}\\[/latex] as a composition of two functions, f and g, where [latex]\left(f\circ g\right)\left(x\right)=H\left(x\right)\\[/latex]. For the following exercises, graph the functions by translating, stretching, and/or compressing a toolkit function. 13. [latex]f\left(x\right)=\sqrt{x+6}-1\\[/latex] 14. [latex]f\left(x\right)=\frac{1}{x+2}-1\\[/latex] For the following exercises, determine whether the functions are even, odd, or neither. 15. [latex]f\left(x\right)=-\frac{5}{{x}^{2}}+9{x}^{6}\\[/latex] 16. [latex]f\left(x\right)=-\frac{5}{{x}^{3}}+9{x}^{5}\\[/latex] 17. [latex]f\left(x\right)=\frac{1}{x}\\[/latex] 18. Graph the absolute value function [latex]f\left(x\right)=-2|x - 1|+3\\[/latex]. 19. Solve [latex]|2x - 3|=17\\[/latex]. 20. Solve [latex]-|\frac{1}{3}x - 3|\ge 17\\[/latex]. Express the solution in interval notation. For the following exercises, find the inverse of the function. 21. [latex]f\left(x\right)=3x - 5\\[/latex] 22. [latex]f\left(x\right)=\frac{4}{x+7}\\[/latex] For the following exercises, use the graph of g shown below.

x | F(x) |
0 | 1 |
1 | 3 |
2 | 5 |
3 | 7 |
4 | 9 |
5 | 11 |
6 | 13 |
7 | 15 |
8 | 17 |
Licenses & Attributions
CC licensed content, Shared previously
- Precalculus. Provided by: OpenStax Authored by: Jay Abramson, et al.. Located at: https://openstax.org/books/precalculus/pages/1-introduction-to-functions. License: CC BY: Attribution. License terms: Download For Free at : http://cnx.org/contents/[email protected]..