MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
 
Determine if the statement is true or false.
| 1) | 1351  0 (mod 7) | 1) | 
|  |  | A) False | B) True | 
| 2) | 11 | 4 (mod 7) | 2) | 
|  |  | A) False | B) True | 
| 3) | 66 | 7 (mod 12) | 3) | 
|  |  | A) False | B) True | 
 
Find the sum.
| 4) | (6 + 5) (mod 6) |  |  | 4) | 
|  | A) 5 | B) 6 | C) 11 | D) 4 | 
| 5) | (48 + 48) (mod 50) |  |  | 5) | 
|  | A) 4 | B) 46 | C) 50 | D) 96 | 
 
Find the sum or product using the requested clock system.
| 6) | 8 | + 10 in 12-hour clock arithmetic |  | 6) | 
|  |  | A) 2 | B) 8 | C) 6 | D) 0 | 
| 7) | 7 | · 16 in 12-hour clock arithmetic |  | 7) | 
|  |  | A) 4 | B) 5 | C) 16 | D) 11 | 
| 8) | 3 | + 221 in 7-day clock arithmetic |  | 8) | 
|  |  | A) 3 | B) 5 | C) 0 | D) 8 | 
| 9) | 1400 + 1900 in the military 24-hour clock system |  | 9) | 
|  |  | A) 0930 | B) 12100 | C) 1900 | D) 0900 | 
| 10) | 0930 + 1640 in the military 24-hour clock system |  | 10) | 
|  |  | A) 0310 | B) 2610 | C) 0210 | D) 2570 | 
 
Decide whether the congruence statement is true or false.
| 11) | 6  13 (mod 2) | 11) | 
|  | A) True | B) False | 
| 12) | 0  26 (mod 7) | 12) | 
|  | A) True | B) False | 
| 13) | 19  77 (mod 5) | 13) | 
|  | A) True | B) False | 
| 14) | 5  21 (mod 5) | 14) | 
|  | A) True | B) False | 
 
 
 
 
 
1
15) 3   13 (mod 11)                                                                                                                             15)
A) True                                                               B) False
 
Perform the modular arithmetic operation.
| 16) | (46 + 37)(mod 7) |  |  | 16) | 
|  | A) 6 | B) 7 | C) 11 | D) 5 | 
| 17) | (130 + 106)(mod 9) |  |  | 17) | 
|  | A) 10 | B) 26 | C) 2 | D) 1 | 
| 18) | (10 · 7)(mod 6) |  |  | 18) | 
|  | A) 3 | B) 6 | C) 11 | D) 4 | 
| 19) | [(11 + 7) · (7 + 3)](mod 7) |  |  | 19) | 
|  | A) 4 | B) 7 | C) 25 | D) 5 | 
| 20) | (49 - 25)(mod 5) |  |  | 20) | 
|  | A) 3 | B) 0 | C) 120 | D) 4 | 
| 21) | (15 - 53)(mod 4) |  |  | 21) | 
|  | A) 3 | B) 2 | C) 1 | D) 152 | 
| 22) | [(3 · 7) - 5](mod 4) |  |  | 22) | 
|  | A) 1 | B) 3 | C) 2 | D) 0 | 
| 23) | [(13 · 3) + 9](mod 8) |  |  | 23) | 
|  | A) 3 | B) 7 | C) 0 | D) 1 | 
| 24) | [(4 - 9) · 7](mod 5) |  |  | 24) | 
|  | A) 2 | B) 0 | C) 4 | D) 3 | 
| 25) | [(-5) · 6](mod 7) |  |  | 25) | 
|  | A) -5 | B) 5 | C) -2 | D) 1 | 
 
Find all positive solutions for the equation.
| 26) x  4 (mod 7) |  |  | 26) | 
|  | A) {1, 18, 25, ...} | B) {4, 11, 18, ...} | C) {4, 8, 12, ...} | D) {11, 18, 91, ...} | 
| 27) | 2x  1 (mod 3) |  |  | 27) | 
|  | A) {2, 6, 10, 14, ...} |  | B) {1, 4, 7, 10, ...} |  | 
|  | C) {2, 5, 8, 11, ...} |  | D) None |  | 
| 28) | 2x  8 (mod 10) |  |  | 28) | 
|  | A) Identity |  | B) {4, 9, 14, 19, 24, 29, ...} |  | 
|  | C) {4, 14, 24, ...} |  | D) {9, 19, 29, ...} |  | 
| 29) | 8x  4 (mod 4) |  |  | 29) | 
|  | A) {4, 8, 12, ...} | B) {1, 5, 9, ...} | C) Identity | D) {2, 6, 5, ...} | 
 
 
 
2
| 30) | 10x  1 (mod 10) |  |  | 30) | 
|  | A) {1, 10, 15, ...} | B) None | C) Identity | D) {2, 7, 12, ...} | 
| 31) | (2 + x)  5 (mod 4) |  |  | 31) | 
|  | A) {4, 6, 8, 10, 12, 14, ...} |  | B) {0, 2, 4, 6, 8, 10, ...} |  | 
|  | C) {3, 7, 11, 15, 19, 23, ...} |  | D) None |  |