Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(2pii)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(2πi)

Solution

i2e2π−1+e4π​
Solution steps
sin(2πi)
Rewrite using trig identities:sin(0)cosh(2π)+icos(0)sinh(2π)
sin(2πi)
Use the following identity: sin(a+bi)=sin(a)cosh(b)+icos(a)sinh(b)=sin(0)cosh(2π)+icos(0)sinh(2π)
=sin(0)cosh(2π)+icos(0)sinh(2π)
Use the following trivial identity:sin(0)=0
sin(0)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Rewrite using trig identities:cosh(2π)=2e2πe4π+1​
cosh(2π)
Use the Hyperbolic identity: cosh(x)=2ex+e−x​=2e2π+e−2π​
2e2π+e−2π​=2e2πe4π+1​
2e2π+e−2π​
Apply exponent rule: a−b=ab1​=2e2π+e2π1​​
Join e2π+e2π1​:e2πe4π+1​
e2π+e2π1​
Convert element to fraction: e2π=e2πe2πe2π​=e2πe2πe2π​+e2π1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=e2πe2πe2π+1​
e2πe2π+1=e4π+1
e2πe2π+1
e2πe2π=e4π
e2πe2π
Apply exponent rule: ab⋅ac=ab+ce2πe2π=e2π+2π=e2π+2π
Add similar elements: 2π+2π=4π=e4π
=e4π+1
=e2πe4π+1​
=2e2πe4π+1​​
Apply the fraction rule: acb​​=c⋅ab​=e2π⋅2e4π+1​
=2e2πe4π+1​
Use the following trivial identity:cos(0)=1
cos(0)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=1
Rewrite using trig identities:sinh(2π)=2e2πe4π−1​
sinh(2π)
Use the Hyperbolic identity: sinh(x)=2ex−e−x​=2e2π−e−2π​
2e2π−e−2π​=2e2πe4π−1​
2e2π−e−2π​
Apply exponent rule: a−b=ab1​=2e2π−e2π1​​
Join e2π−e2π1​:e2πe4π−1​
e2π−e2π1​
Convert element to fraction: e2π=e2πe2πe2π​=e2πe2πe2π​−e2π1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=e2πe2πe2π−1​
e2πe2π−1=e4π−1
e2πe2π−1
e2πe2π=e4π
e2πe2π
Apply exponent rule: ab⋅ac=ab+ce2πe2π=e2π+2π=e2π+2π
Add similar elements: 2π+2π=4π=e4π
=e4π−1
=e2πe4π−1​
=2e2πe4π−1​​
Apply the fraction rule: acb​​=c⋅ab​=e2π⋅2e4π−1​
=2e2πe4π−1​
=0⋅2e2πe4π+1​+i1⋅2e2πe4π−1​
Simplify 0⋅2e2πe4π+1​+i1⋅2e2πe4π−1​:i2e2π−1+e4π​
0⋅2e2πe4π+1​+i1⋅2e2πe4π−1​
0⋅2e2πe4π+1​=0
0⋅2e2πe4π+1​
Apply rule 0⋅a=0=0
i1⋅2e2πe4π−1​=2e2πi(e4π−1)​
i1⋅2e2πe4π−1​
Multiply fractions: a⋅cb​=ca⋅b​=1⋅2e2πi(e4π−1)​
Multiply: 1⋅2e2π(e4π−1)i​=2e2π(e4π−1)i​=2e2πi(e4π−1)​
=0+2e2πi(e4π−1)​
0+2e2π(e4π−1)i​=2e2π(e4π−1)i​=2e2πi(e4π−1)​
Rewrite 2e2πi(e4π−1)​ in standard complex form: 2e2πe4π−1​i
2e2πi(e4π−1)​
Expand i(e4π−1):ie4π−i
i(e4π−1)
Apply the distributive law: a(b−c)=ab−aca=i,b=e4π,c=1=ie4π−i1
=ie4π−1i
Multiply: 1i=i=ie4π−i
=2e2πie4π−i​
Apply the fraction rule: ca±b​=ca​±cb​2e2πie4π−i​=2e2πie4π​−2e2πi​=2e2πie4π​−2e2πi​
Cancel 2e2πie4π​:2ie2π​
2e2πie4π​
Cancel 2e2πie4π​:2ie2π​
2e2πie4π​
Apply exponent rule: xbxa​=xa−be2πe4π​=e4π−2π=2ie4π−2π​
Subtract the numbers: 4π−2π=2π=2ie2π​
=2ie2π​
=2ie2π​−2e2πi​
Group the real part and the imaginary part of the complex number=(2e2π​−2e2π1​)i
2e2π​−2e2π1​=2e2πe4π−1​
2e2π​−2e2π1​
Least Common Multiplier of 2,2e2π:2e2π
2,2e2π
Lowest Common Multiplier (LCM)
Least Common Multiplier of 2,2:2
2,2
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 2 or 2=2
Multiply the numbers: 2=2=2
Compute an expression comprised of factors that appear either in 2 or 2e2π=2e2π
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 2e2π
For 2e2π​:multiply the denominator and numerator by e2π2e2π​=2e2πe2πe2π​=2e2πe4π​
=2e2πe4π​−2e2π1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2e2πe4π−1​
=2e2πe4π−1​i
=2e2πe4π−1​i
=i2e2π−1+e4π​

Popular Examples

cos(arccos(-0.6))1.5*sin(30)sin(1/2 arcsin(-7/25))cos(36)-cos(72)(3500sin(2))/(sin(58))

Frequently Asked Questions (FAQ)

  • What is the value of sin(2pii) ?

    The value of sin(2pii) is i(-1+e^{4pi})/(2e^{2pi)}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024