Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan((3pi)/8)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(83π​)

Solution

3+22​​
+1
Decimal
2.41421…
Solution steps
tan(83π​)
Rewrite using trig identities:1+cos(43π​)1−cos(43π​)​​
tan(83π​)
Write tan(83π​)as tan(243π​​)=tan(243π​​)
Use the Half Angle identity:tan(2θ​)=1+cos(θ)1−cos(θ)​​
Rewrite using trig identities:tan2(θ)=1+cos(2θ)1−cos(2θ)​
Use the following identity
tan(θ)=cos(θ)sin(θ)​
Square both sidestan2(θ)=cos2(θ)sin2(θ)​
Rewrite using trig identities:sin2(θ)=21−cos(2θ)​
Use the Double Angle identitycos(2θ)=1−2sin2(θ)
Switch sides2sin2(θ)−1=−cos(2θ)
Add 1 to both sides2sin2(θ)=1−cos(2θ)
Divide both sides by 2sin2(θ)=21−cos(2θ)​
Rewrite using trig identities:cos2(θ)=21+cos(2θ)​
Use the Double Angle identitycos(2θ)=2cos2(θ)−1
Switch sides2cos2(θ)−1=cos(2θ)
Add 1 to both sides2sin2(θ)=1+cos(2θ)
Divide both sides by 2cos2(θ)=21+cos(2θ)​
tan2(θ)=21+cos(2θ)​21−cos(2θ)​​
Simplifytan2(θ)=1+cos(2θ)1−cos(2θ)​
Substitute θ with 2θ​tan2(2θ​)=1+cos(2⋅2θ​)1−cos(2⋅2θ​)​
Simplifytan2(2θ​)=1+cos(θ)1−cos(θ)​
Square root both sides
Choose the root sign according to the quadrant of 2θ​:
range[0,2π​][2π​,π]​quadrantIII​tanpositivenegative​​
tan(2θ​)=1+cos(θ)1−cos(θ)​​
=1+cos(43π​)1−cos(43π​)​​
=1+cos(43π​)1−cos(43π​)​​
Use the following trivial identity:cos(43π​)=−22​​
cos(43π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−22​​
=1−22​​1−(−22​​)​​
Simplify 1−22​​1−(−22​​)​​:3+22​​
1−22​​1−(−22​​)​​
Apply rule −(−a)=a=1−22​​1+22​​​​
1−22​​1+22​​​=2​−12​+1​
1−22​​1+22​​​
Join 1−22​​:22−2​​
1−22​​
Convert element to fraction: 1=21⋅2​=21⋅2​−22​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=21⋅2−2​​
Multiply the numbers: 1⋅2=2=22−2​​
=22−2​​1+22​​​
Join 1+22​​:22+2​​
1+22​​
Convert element to fraction: 1=21⋅2​=21⋅2​+22​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=21⋅2+2​​
Multiply the numbers: 1⋅2=2=22+2​​
=22−2​​22+2​​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=2(2−2​)(2+2​)⋅2​
Cancel the common factor: 2=2−2​2+2​​
Factor 2+2​:2​(2​+1)
2+2​
2=2​2​=2​2​+2​
Factor out common term 2​=2​(2​+1)
=2−2​2​(2​+1)​
Factor 2−2​:2​(2​−1)
2−2​
2=2​2​=2​2​−2​
Factor out common term 2​=2​(2​−1)
=2​(2​−1)2​(2​+1)​
Cancel the common factor: 2​=2​−12​+1​
=2​−12​+1​​
2​−12​+1​=3+22​
2​−12​+1​
Multiply by the conjugate 2​+12​+1​=(2​−1)(2​+1)(2​+1)(2​+1)​
(2​+1)(2​+1)=3+22​
(2​+1)(2​+1)
Apply exponent rule: ab⋅ac=ab+c(2​+1)(2​+1)=(2​+1)1+1=(2​+1)1+1
Add the numbers: 1+1=2=(2​+1)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=2​,b=1
=(2​)2+22​⋅1+12
Simplify (2​)2+22​⋅1+12:3+22​
(2​)2+22​⋅1+12
Apply rule 1a=112=1=(2​)2+2⋅1⋅2​+1
(2​)2=2
(2​)2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
22​⋅1=22​
22​⋅1
Multiply the numbers: 2⋅1=2=22​
=2+22​+1
Add the numbers: 2+1=3=3+22​
=3+22​
(2​−1)(2​+1)=1
(2​−1)(2​+1)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=2​,b=1=(2​)2−12
Simplify (2​)2−12:1
(2​)2−12
Apply rule 1a=112=1=(2​)2−1
(2​)2=2
(2​)2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=2−1
Subtract the numbers: 2−1=1=1
=1
=13+22​​
Apply rule 1a​=a=3+22​
=3+22​​
=3+22​​

Popular Examples

7sin(2X)=0sec(-pi/6)prove sin(x)(tan(x))=sec(x)-cos(x)cos(θ)=0arctan(-(sqrt(3))/3)

Frequently Asked Questions (FAQ)

  • What is the value of tan((3pi)/8) ?

    The value of tan((3pi)/8) is sqrt(3+2\sqrt{2)}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024