Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(x)+1=sin(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)+1=sin(x)

Solution

x=2π​+2πn,x=π+2πn
+1
Degrees
x=90∘+360∘n,x=180∘+360∘n
Solution steps
cos(x)+1=sin(x)
Subtract sin(x) from both sidescos(x)+1−sin(x)=0
Rewrite using trig identities
1+cos(x)−sin(x)
Use the following identity: sin(x)=cos(2π​−x)=1+cos(x)−cos(2π​−x)
Use the Sum to Product identity: cos(s)−cos(t)=−2sin(2s+t​)sin(2s−t​)=1−2sin(2x+2π​−x​)sin(2x−(2π​−x)​)
2sin(2x+2π​−x​)sin(2x−(2π​−x)​)=2​sin(44x−π​)
2sin(2x+2π​−x​)sin(2x−(2π​−x)​)
2x+2π​−x​=4π​
2x+2π​−x​
x+2π​−x=2π​
x+2π​−x
Group like terms=x−x+2π​
Add similar elements: x−x=0=2π​
=22π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2π​
Multiply the numbers: 2⋅2=4=4π​
=2sin(4π​)sin(2x−(−x+2π​)​)
2x−(2π​−x)​=44x−π​
2x−(2π​−x)​
Expand x−(2π​−x):2x−2π​
x−(2π​−x)
−(2π​−x):−2π​+x
−(2π​−x)
Distribute parentheses=−(2π​)−(−x)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2π​+x
=x−2π​+x
Simplify x−2π​+x:2x−2π​
x−2π​+x
Group like terms=x+x−2π​
Add similar elements: x+x=2x=2x−2π​
=2x−2π​
=22x−2π​​
Join 2x−2π​:24x−π​
2x−2π​
Convert element to fraction: 2x=22x2​=22x⋅2​−2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=22x⋅2−π​
Multiply the numbers: 2⋅2=4=24x−π​
=224x−π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅24x−π​
Multiply the numbers: 2⋅2=4=44x−π​
=2sin(4π​)sin(44x−π​)
Simplify sin(4π​):22​​
sin(4π​)
Use the following trivial identity:sin(4π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=2⋅22​​sin(44x−π​)
Multiply fractions: a⋅cb​=ca⋅b​=22​⋅2sin(44x−π​)​
Cancel the common factor: 2=2​sin(44x−π​)
=1−2​sin(44x−π​)
1−2​sin(44x−π​)=0
Move 1to the right side
1−2​sin(44x−π​)=0
Subtract 1 from both sides1−2​sin(44x−π​)−1=0−1
Simplify−2​sin(44x−π​)=−1
−2​sin(44x−π​)=−1
Divide both sides by −2​
−2​sin(44x−π​)=−1
Divide both sides by −2​−2​−2​sin(44x−π​)​=−2​−1​
Simplify
−2​−2​sin(44x−π​)​=−2​−1​
Simplify −2​−2​sin(44x−π​)​:sin(44x−π​)
−2​−2​sin(44x−π​)​
Apply the fraction rule: −b−a​=ba​=2​2​sin(44x−π​)​
Cancel the common factor: 2​=sin(44x−π​)
Simplify −2​−1​:22​​
−2​−1​
Apply the fraction rule: −b−a​=ba​=2​1​
Rationalize 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
=22​​
sin(44x−π​)=22​​
sin(44x−π​)=22​​
sin(44x−π​)=22​​
General solutions for sin(44x−π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
44x−π​=4π​+2πn,44x−π​=43π​+2πn
44x−π​=4π​+2πn,44x−π​=43π​+2πn
Solve 44x−π​=4π​+2πn:x=2π​+2πn
44x−π​=4π​+2πn
Multiply both sides by 4
44x−π​=4π​+2πn
Multiply both sides by 444(4x−π)​=4⋅4π​+4⋅2πn
Simplify
44(4x−π)​=4⋅4π​+4⋅2πn
Simplify 44(4x−π)​:4x−π
44(4x−π)​
Divide the numbers: 44​=1=4x−π
Simplify 4⋅4π​+4⋅2πn:π+8πn
4⋅4π​+4⋅2πn
4⋅4π​=π
4⋅4π​
Multiply fractions: a⋅cb​=ca⋅b​=4π4​
Cancel the common factor: 4=π
4⋅2πn=8πn
4⋅2πn
Multiply the numbers: 4⋅2=8=8πn
=π+8πn
4x−π=π+8πn
4x−π=π+8πn
4x−π=π+8πn
Move πto the right side
4x−π=π+8πn
Add π to both sides4x−π+π=π+8πn+π
Simplify4x=2π+8πn
4x=2π+8πn
Divide both sides by 4
4x=2π+8πn
Divide both sides by 444x​=42π​+48πn​
Simplify
44x​=42π​+48πn​
Simplify 44x​:x
44x​
Divide the numbers: 44​=1=x
Simplify 42π​+48πn​:2π​+2πn
42π​+48πn​
Cancel 42π​:2π​
42π​
Cancel the common factor: 2=2π​
=2π​+48πn​
Divide the numbers: 48​=2=2π​+2πn
x=2π​+2πn
x=2π​+2πn
x=2π​+2πn
Solve 44x−π​=43π​+2πn:x=π+2πn
44x−π​=43π​+2πn
Multiply both sides by 4
44x−π​=43π​+2πn
Multiply both sides by 444(4x−π)​=4⋅43π​+4⋅2πn
Simplify
44(4x−π)​=4⋅43π​+4⋅2πn
Simplify 44(4x−π)​:4x−π
44(4x−π)​
Divide the numbers: 44​=1=4x−π
Simplify 4⋅43π​+4⋅2πn:3π+8πn
4⋅43π​+4⋅2πn
4⋅43π​=3π
4⋅43π​
Multiply fractions: a⋅cb​=ca⋅b​=43π4​
Cancel the common factor: 4=3π
4⋅2πn=8πn
4⋅2πn
Multiply the numbers: 4⋅2=8=8πn
=3π+8πn
4x−π=3π+8πn
4x−π=3π+8πn
4x−π=3π+8πn
Move πto the right side
4x−π=3π+8πn
Add π to both sides4x−π+π=3π+8πn+π
Simplify4x=4π+8πn
4x=4π+8πn
Divide both sides by 4
4x=4π+8πn
Divide both sides by 444x​=44π​+48πn​
Simplify
44x​=44π​+48πn​
Simplify 44x​:x
44x​
Divide the numbers: 44​=1=x
Simplify 44π​+48πn​:π+2πn
44π​+48πn​
Divide the numbers: 44​=1=π+48πn​
Divide the numbers: 48​=2=π+2πn
x=π+2πn
x=π+2πn
x=π+2πn
x=2π​+2πn,x=π+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(210)2tan(θ)-sec^2(θ)=0arcsinh(1)tan(pi/4)sin^2(x)= 1/4 ,0<= x<= 2pi

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(x)+1=sin(x) ?

    The general solution for cos(x)+1=sin(x) is x= pi/2+2pin,x=pi+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024