Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(2+i)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(2+i)

Solution

i2e2−1+e4​
Solution steps
sin(2+i)
Rewrite using trig identities:2sin(i)cos(i)
sin(2+i)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=2sin(i)cos(i)
=2sin(i)cos(i)
Rewrite using trig identities:sin(i)=i2e−1+e2​
sin(i)
Rewrite using trig identities:sin(0)cosh(1)+icos(0)sinh(1)
sin(i)
Use the following identity: sin(a+bi)=sin(a)cosh(b)+icos(a)sinh(b)=sin(0)cosh(1)+icos(0)sinh(1)
=sin(0)cosh(1)+icos(0)sinh(1)
Use the following trivial identity:sin(0)=0
sin(0)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Rewrite using trig identities:cosh(1)=2ee2+1​
cosh(1)
Use the Hyperbolic identity: cosh(x)=2ex+e−x​=2e1+e−1​
2e1+e−1​=2ee2+1​
2e1+e−1​
Apply rule a1=ae1=e=2e+e−1​
Apply exponent rule: a−1=a1​=2e+e1​​
Join e+e1​:ee2+1​
e+e1​
Convert element to fraction: e=eee​=eee​+e1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=eee+1​
ee+1=e2+1
ee+1
ee=e2
ee
Apply exponent rule: ab⋅ac=ab+cee=e1+1=e1+1
Add the numbers: 1+1=2=e2
=e2+1
=ee2+1​
=2ee2+1​​
Apply the fraction rule: acb​​=c⋅ab​=e2e2+1​
=2ee2+1​
Use the following trivial identity:cos(0)=1
cos(0)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=1
Rewrite using trig identities:sinh(1)=2ee2−1​
sinh(1)
Use the Hyperbolic identity: sinh(x)=2ex−e−x​=2e1−e−1​
2e1−e−1​=2ee2−1​
2e1−e−1​
Apply rule a1=ae1=e=2e−e−1​
Apply exponent rule: a−1=a1​=2e−e1​​
Join e−e1​:ee2−1​
e−e1​
Convert element to fraction: e=eee​=eee​−e1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=eee−1​
ee−1=e2−1
ee−1
ee=e2
ee
Apply exponent rule: ab⋅ac=ab+cee=e1+1=e1+1
Add the numbers: 1+1=2=e2
=e2−1
=ee2−1​
=2ee2−1​​
Apply the fraction rule: acb​​=c⋅ab​=e2e2−1​
=2ee2−1​
=0⋅2ee2+1​+i1⋅2ee2−1​
Simplify 0⋅2ee2+1​+i1⋅2ee2−1​:i2e−1+e2​
0⋅2ee2+1​+i1⋅2ee2−1​
0⋅2ee2+1​=0
0⋅2ee2+1​
Apply rule 0⋅a=0=0
i1⋅2ee2−1​=2ei(e2−1)​
i1⋅2ee2−1​
Multiply fractions: a⋅cb​=ca⋅b​=1⋅2ei(e2−1)​
Multiply: 1⋅2e(e2−1)i​=2e(e2−1)i​=2ei(e2−1)​
=0+2ei(e2−1)​
0+2e(e2−1)i​=2e(e2−1)i​=2ei(e2−1)​
Rewrite 2ei(e2−1)​ in standard complex form: 2ee2−1​i
2ei(e2−1)​
Expand i(e2−1):e2i−i
i(e2−1)
Apply the distributive law: a(b−c)=ab−aca=i,b=e2,c=1=ie2−i1
=e2i−1i
Multiply: 1i=i=e2i−i
=2ee2i−i​
Apply the fraction rule: ca±b​=ca​±cb​2ee2i−i​=2ee2i​−2ei​=2ee2i​−2ei​
Cancel 2ee2i​:2ei​
2ee2i​
Cancel the common factor: e=2ei​
=2ei​−2ei​
Group the real part and the imaginary part of the complex number=(2e​−2e1​)i
2e​−2e1​=2ee2−1​
2e​−2e1​
Least Common Multiplier of 2,2e:2e
2,2e
Lowest Common Multiplier (LCM)
Least Common Multiplier of 2,2:2
2,2
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 2 or 2=2
Multiply the numbers: 2=2=2
Compute an expression comprised of factors that appear either in 2 or 2e=2e
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 2e
For 2e​:multiply the denominator and numerator by e2e​=2eee​=2ee2​
=2ee2​−2e1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2ee2−1​
=2ee2−1​i
=2ee2−1​i
=i2e−1+e2​
Rewrite using trig identities:cos(i)=2ee2+1​
cos(i)
Rewrite using trig identities:cos(0)cosh(1)−isin(0)sinh(1)
cos(i)
Use the following identity: cos(a+bi)=cos(a)cosh(b)−isin(a)sinh(b)=cos(0)cosh(1)−isin(0)sinh(1)
=cos(0)cosh(1)−isin(0)sinh(1)
Use the following trivial identity:sin(0)=0
sin(0)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=cos(0)cosh(1)−i0⋅sinh(1)
=cos(0)cosh(1)−i0⋅sinh(1)
Simplify=cos(0)cosh(1)
Use the following trivial identity:cos(0)=1
cos(0)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=1
Rewrite using trig identities:cosh(1)=2ee2+1​
cosh(1)
Use the Hyperbolic identity: cosh(x)=2ex+e−x​=2e1+e−1​
2e1+e−1​=2ee2+1​
2e1+e−1​
Apply rule a1=ae1=e=2e+e−1​
Apply exponent rule: a−1=a1​=2e+e1​​
Join e+e1​:ee2+1​
e+e1​
Convert element to fraction: e=eee​=eee​+e1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=eee+1​
ee+1=e2+1
ee+1
ee=e2
ee
Apply exponent rule: ab⋅ac=ab+cee=e1+1=e1+1
Add the numbers: 1+1=2=e2
=e2+1
=ee2+1​
=2ee2+1​​
Apply the fraction rule: acb​​=c⋅ab​=e2e2+1​
=2ee2+1​
=1⋅2ee2+1​
Simplify=2ee2+1​
=2i2e−1+e2​⋅2ee2+1​
Simplify 2i2e−1+e2​⋅2ee2+1​:i2e2−1+e4​
2i2e−1+e2​⋅2ee2+1​
Multiply fractions: a⋅cb​⋅ed​=c⋅ea⋅b⋅d​=2e2e(−1+e2)(e2+1)⋅2i​
Cancel the common factor: 2=e2e(−1+e2)(e2+1)i​
e2e=2e2
e2e
Apply exponent rule: ab⋅ac=ab+cee=e1+1=2e1+1
Add the numbers: 1+1=2=2e2
=2e2i(e2−1)(e2+1)​
Rewrite 2e2(−1+e2)(e2+1)i​ in standard complex form: 2e2e4−1​i
2e2(−1+e2)(e2+1)i​
Expand (−1+e2)(e2+1)i:e4i−i
(−1+e2)(e2+1)i
=i(−1+e2)(e2+1)
Expand (−1+e2)(e2+1):e4−1
(−1+e2)(e2+1)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=e2,b=1=(e2)2−12
Simplify (e2)2−12:e4−1
(e2)2−12
Apply rule 1a=112=1=(e2)2−1
(e2)2=e4
(e2)2
Apply exponent rule: (ab)c=abc=e2⋅2
Multiply the numbers: 2⋅2=4=e4
=e4−1
=e4−1
=i(e4−1)
Expand i(e4−1):e4i−i
i(e4−1)
Apply the distributive law: a(b−c)=ab−aca=i,b=e4,c=1=ie4−i1
=e4i−1i
Multiply: 1i=i=e4i−i
=e4i−i
=2e2e4i−i​
Apply the fraction rule: ca±b​=ca​±cb​2e2e4i−i​=2e2e4i​−2e2i​=2e2e4i​−2e2i​
Cancel 2e2e4i​:2e2i​
2e2e4i​
Cancel 2e2e4i​:2e2i​
2e2e4i​
Apply exponent rule: xbxa​=xa−be2e4​=e4−2=2ie4−2​
Subtract the numbers: 4−2=2=2e2i​
=2e2i​
=2e2i​−2e2i​
Group the real part and the imaginary part of the complex number=(2e2​−2e21​)i
2e2​−2e21​=2e2e4−1​
2e2​−2e21​
Least Common Multiplier of 2,2e2:2e2
2,2e2
Lowest Common Multiplier (LCM)
Least Common Multiplier of 2,2:2
2,2
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 2 or 2=2
Multiply the numbers: 2=2=2
Compute an expression comprised of factors that appear either in 2 or 2e2=2e2
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 2e2
For 2e2​:multiply the denominator and numerator by e22e2​=2e2e2e2​=2e2e4​
=2e2e4​−2e21​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2e2e4−1​
=2e2e4−1​i
=2e2e4−1​i
=i2e2−1+e4​

Popular Examples

tan((11pi)/6-pi/4)tan(pi/3-0.1)-tan(pi/3)cosh(1+i)arcsin(sin(2pi))sin(2.3)

Frequently Asked Questions (FAQ)

  • What is the value of sin(2+i) ?

    The value of sin(2+i) is i(-1+e^4)/(2e^2)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024