Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cosh(1+i)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cosh(1+i)

Solution

2ecos(1)+e2cos(1)​+i2e−sin(1)+e2sin(1)​
Solution steps
cosh(1+i)
Use the Hyperbolic identity: cosh(x)=2ex+e−x​=2e1+i+e−(1+i)​
Simplify 2e1+i+e−(1+i)​:2ecos(−1)+e2cos(1)​+i2esin(−1)+e2sin(1)​
2e1+i+e−(1+i)​
e1+i+e−(1+i)=e(cos(1)+isin(1))+e−1(cos(−1)+isin(−1))
e1+i+e−(1+i)
e1+i=e(cos(1)+isin(1))
e1+i
Apply imaginary number rule: ea+ib=ea(cos(b)+isin(b))=e1(cos(1)+isin(1))
Apply rule a1=ae1=e=e(cos(1)+isin(1))
e−(1+i)=e−1(cos(−1)+isin(−1))
e−(1+i)
Apply imaginary number rule: ea+ib=ea(cos(b)+isin(b))=e−1(cos(−1)+isin(−1))
=e(cos(1)+isin(1))+e−1(cos(−1)+isin(−1))
=2e(cos(1)+isin(1))+e−1(cos(−1)+isin(−1))​
e−1(cos(−1)+sin(−1)i)=ecos(−1)+isin(−1)​
e−1(cos(−1)+sin(−1)i)
Apply exponent rule: a−1=a1​e−1=e1​=e1​(cos(−1)+isin(−1))
Multiply fractions: a⋅cb​=ca⋅b​=e1⋅(cos(−1)+sin(−1)i)​
1⋅(cos(−1)+sin(−1)i)=cos(−1)+isin(−1)
1⋅(cos(−1)+sin(−1)i)
Multiply: 1⋅(cos(−1)+sin(−1)i)=(cos(−1)+sin(−1)i)=(cos(−1)+isin(−1))
Remove parentheses: (a)=a=cos(−1)+sin(−1)i
=ecos(−1)+isin(−1)​
=2e(cos(1)+isin(1))+ecos(−1)+isin(−1)​​
Join e(cos(1)+sin(1)i)+ecos(−1)+sin(−1)i​:ee2(cos(1)+isin(1))+cos(−1)+isin(−1)​
e(cos(1)+sin(1)i)+ecos(−1)+sin(−1)i​
Convert element to fraction: e(cos(1)+isin(1))=ee(cos(1)+sin(1)i)e​=ee(cos(1)+sin(1)i)e​+ecos(−1)+sin(−1)i​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=ee(cos(1)+sin(1)i)e+cos(−1)+sin(−1)i​
e(cos(1)+sin(1)i)e+cos(−1)+sin(−1)i=e2(cos(1)+isin(1))+cos(−1)+isin(−1)
e(cos(1)+sin(1)i)e+cos(−1)+sin(−1)i
e(cos(1)+sin(1)i)e=e2(cos(1)+isin(1))
e(cos(1)+sin(1)i)e
Apply exponent rule: ab⋅ac=ab+cee=e1+1=(cos(1)+sin(1)i)e1+1
Add the numbers: 1+1=2=(cos(1)+sin(1)i)e2
=e2(cos(1)+isin(1))+cos(−1)+isin(−1)
=ee2(cos(1)+isin(1))+cos(−1)+isin(−1)​
=2ee2(cos(1)+isin(1))+cos(−1)+isin(−1)​​
Apply the fraction rule: acb​​=c⋅ab​=e2(cos(1)+sin(1)i)e2+cos(−1)+sin(−1)i​
Rewrite e2(cos(1)+sin(1)i)e2+cos(−1)+sin(−1)i​ in standard complex form: 2ee2cos(1)+cos(−1)​+2ee2sin(1)+sin(−1)​i
e2(cos(1)+sin(1)i)e2+cos(−1)+sin(−1)i​
Expand (cos(1)+sin(1)i)e2+cos(−1)+sin(−1)i:e2cos(1)+e2isin(1)+cos(−1)+sin(−1)i
(cos(1)+sin(1)i)e2+cos(−1)+sin(−1)i
=e2(cos(1)+isin(1))+cos(−1)+isin(−1)
Expand e2(cos(1)+sin(1)i):e2cos(1)+e2isin(1)
e2(cos(1)+sin(1)i)
Apply the distributive law: a(b+c)=ab+aca=e2,b=cos(1),c=sin(1)i=e2cos(1)+e2sin(1)i
=e2cos(1)+e2isin(1)
=e2cos(1)+e2isin(1)+cos(−1)+sin(−1)i
=2ee2cos(1)+e2isin(1)+cos(−1)+isin(−1)​
Apply the fraction rule: ca±b​=ca​±cb​2ee2cos(1)+e2isin(1)+cos(−1)+isin(−1)​=2ee2cos(1)​+2ee2isin(1)​+2ecos(−1)​+2eisin(−1)​=2ee2cos(1)​+2ee2isin(1)​+2ecos(−1)​+2eisin(−1)​
Group like terms=2ecos(−1)​+2eisin(−1)​+2ee2cos(1)​+2ee2isin(1)​
Cancel 2ee2cos(1)​:2ecos(1)​
2ee2cos(1)​
Cancel the common factor: e=2ecos(1)​
=2ecos(−1)​+2eisin(−1)​+2ecos(1)​+2ee2isin(1)​
Cancel 2ee2isin(1)​:2eisin(1)​
2ee2isin(1)​
Cancel the common factor: e=2eisin(1)​
=2ecos(−1)​+2eisin(−1)​+2ecos(1)​+2eisin(1)​
Group like terms=2ecos(1)​+2ecos(−1)​+2eisin(1)​+2eisin(−1)​
Group the real part and the imaginary part of the complex number=(2ecos(1)​+2ecos(−1)​)+(2esin(1)​+2esin(−1)​)i
2esin(1)​+2esin(−1)​=2ee2sin(1)+sin(−1)​
2esin(1)​+2esin(−1)​
Least Common Multiplier of 2,2e:2e
2,2e
Lowest Common Multiplier (LCM)
Least Common Multiplier of 2,2:2
2,2
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 2 or 2=2
Multiply the numbers: 2=2=2
Compute an expression comprised of factors that appear either in 2 or 2e=2e
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 2e
For 2esin(1)​:multiply the denominator and numerator by e2esin(1)​=2eesin(1)e​=2ee2sin(1)​
=2ee2sin(1)​+2esin(−1)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2ee2sin(1)+sin(−1)​
=(2ecos(1)​+2ecos(−1)​)+2ee2sin(1)+sin(−1)​i
2ecos(1)​+2ecos(−1)​=2ee2cos(1)+cos(−1)​
2ecos(1)​+2ecos(−1)​
Least Common Multiplier of 2,2e:2e
2,2e
Lowest Common Multiplier (LCM)
Least Common Multiplier of 2,2:2
2,2
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 2 or 2=2
Multiply the numbers: 2=2=2
Compute an expression comprised of factors that appear either in 2 or 2e=2e
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 2e
For 2ecos(1)​:multiply the denominator and numerator by e2ecos(1)​=2eecos(1)e​=2ee2cos(1)​
=2ee2cos(1)​+2ecos(−1)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2ee2cos(1)+cos(−1)​
=2ee2cos(1)+cos(−1)​+2ee2sin(1)+sin(−1)​i
=2ee2cos(1)+cos(−1)​+2ee2sin(1)+sin(−1)​i
=2ecos(−1)+e2cos(1)​+i2esin(−1)+e2sin(1)​
Use the following property: sin(−x)=−sin(x)sin(−1)=−sin(1)=2ecos(−1)+e2cos(1)​+i2e−sin(1)+e2sin(1)​
Use the following property: cos(−x)=cos(x)cos(−1)=cos(1)=2ecos(1)+e2cos(1)​+i2e−sin(1)+e2sin(1)​

Popular Examples

arcsin(sin(2pi))sin(2.3)sin(45)*3sec(-pi/3)-cot(-(5pi)/4)49cos(30)

Frequently Asked Questions (FAQ)

  • What is the value of cosh(1+i) ?

    The value of cosh(1+i) is (cos(1)+e^2cos(1))/(2e)+i(-sin(1)+e^2sin(1))/(2e)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024