Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(6.3)/(cos(27))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(27∘)6.3​

Solution

2063(−5−5​​+22​)(3−5​)2​5−5​​+4​​
+1
Decimal
7.07065…
Solution steps
cos(27∘)6.3​
=cos(27∘)1063​​
Simplify=10cos(27∘)63​
Rewrite using trig identities:cos(27∘)=21+cos(54∘)​​
cos(27∘)
Write cos(27∘)as cos(254∘​)=cos(254∘​)
Use the Half Angle identity:cos(2θ​)=21+cos(θ)​​
Use the Double Angle identitycos(2θ)=2cos2(θ)−1
Substitute θ with 2θ​cos(θ)=2cos2(2θ​)−1
Switch sides2cos2(2θ​)=1+cos(θ)
Divide both sides by 2cos2(2θ​)=2(1+cos(θ))​
Square root both sides
Choose the root sign according to the quadrant of 2θ​:
range[0,90∘][90∘,180∘][180∘,270∘][270∘,360∘]​quadrantIIIIIIIV​sinpositivepositivenegativenegative​cospositivenegativenegativepositive​​
cos(2θ​)=2(1+cos(θ))​​
=21+cos(54∘)​​
=1021+cos(54∘)​​63​
Simplify=50−50cos2(54∘)63(52​−52​cos(54∘))1+cos(54∘)​​
Rewrite using trig identities:cos(54∘)=42​5−5​​​
cos(54∘)
Rewrite using trig identities:sin(36∘)
cos(54∘)
Use the following identity: cos(x)=sin(90∘−x)=sin(90∘−54∘)
Simplify=sin(36∘)
=sin(36∘)
Rewrite using trig identities:42​5−5​​​
sin(36∘)
Show that: cos(36∘)−sin(18∘)=21​
Use the following product to sum identity: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 21​=2sin(18∘)cos(36∘)21​=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21​=cos(90∘−54∘)−sin(18∘)
21​=cos(36∘)−sin(18∘)
Show that: cos(36∘)+sin(18∘)=45​​
Use the factorization rule: a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
Refine(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 2cos(36∘)sin(18∘)=21​(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
Substitute cos(36∘)−sin(18∘)=21​(cos(36∘)+sin(18∘))2−(21​)2=1
Refine(cos(36∘)+sin(18∘))2−41​=1
Add 41​ to both sides(cos(36∘)+sin(18∘))2−41​+41​=1+41​
Refine(cos(36∘)+sin(18∘))2=45​
Take the square root of both sidescos(36∘)+sin(18∘)=±45​​
cos(36∘)cannot be negativesin(18∘)cannot be negativecos(36∘)+sin(18∘)=45​​
Add the following equationscos(36∘)+sin(18∘)=25​​((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25​​+21​)
Refinecos(36∘)=45​+1​
Square both sides(cos(36∘))2=(45​+1​)2
Use the following identity: sin2(x)=1−cos2(x)sin2(36∘)=1−cos2(36∘)
Substitute cos(36∘)=45​+1​sin2(36∘)=1−(45​+1​)2
Refinesin2(36∘)=85−5​​
Take the square root of both sidessin(36∘)=±85−5​​​
sin(36∘)cannot be negativesin(36∘)=85−5​​​
Refinesin(36∘)=225−5​​​​
=225−5​​​​
Simplify=42​5−5​​​
=42​5−5​​​
=50−50(42​5−5​​​)263(52​−52​42​5−5​​​)1+42​5−5​​​​​
Simplify 50−50(42​5−5​​​)263(52​−52​42​5−5​​​)1+42​5−5​​​​​:2063(−5−5​​+22​)(3−5​)2​5−5​​+4​​
50−50(42​5−5​​​)263(52​−52​42​5−5​​​)1+42​5−5​​​​​
50(42​5−5​​​)2=425(5−5​)​
50(42​5−5​​​)2
(42​5−5​​​)2=235−5​​
(42​5−5​​​)2
Apply exponent rule: (ba​)c=bcac​=42(2​5−5​​)2​
Apply exponent rule: (a⋅b)n=anbn(2​5−5​​)2=(2​)2(5−5​​)2=42(2​)2(5−5​​)2​
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=422(5−5​​)2​
(5−5​​)2:5−5​
Apply radical rule: a​=a21​=((5−5​)21​)2
Apply exponent rule: (ab)c=abc=(5−5​)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5−5​
=422(5−5​)​
Factor 42:24
Factor 4=22=(22)2
Simplify (22)2:24
(22)2
Apply exponent rule: (ab)c=abc=22⋅2
Multiply the numbers: 2⋅2=4=24
=24
=242(5−5​)​
Cancel the common factor: 2=235−5​​
=50⋅235−5​​
Multiply fractions: a⋅cb​=ca⋅b​=23(5−5​)⋅50​
Factor 50:52⋅2
Factor 50=52⋅2
=2352⋅2(5−5​)​
Cancel the common factor: 2=2252(5−5​)​
52=25=2225(5−5​)​
22=4=425(5−5​)​
=50−425(5−5​)​63(−52​42​5−5​​​+52​)42​5−5​​​+1​​
52​42​5−5​​​=255−5​​​
52​42​5−5​​​
Multiply fractions: a⋅cb​=ca⋅b​=42​5−5​​⋅52​​
2​5−5​​⋅52​=105−5​​
2​5−5​​⋅52​
Apply radical rule: a​a​=a2​2​=2=5⋅25−5​​
Multiply the numbers: 5⋅2=10=105−5​​
=4105−5​​​
Cancel the common factor: 2=255−5​​​
=50−425(5−5​)​63(−255−5​​​+52​)42​5−5​​​+1​​
1+42​5−5​​​​=24+2​5−5​​​​
1+42​5−5​​​​
Join 1+42​5−5​​​:44+2​5−5​​​
1+42​5−5​​​
Convert element to fraction: 1=41⋅4​=41⋅4​+42​5−5​​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4+2​5−5​​​
Multiply the numbers: 1⋅4=4=44+2​5−5​​​
=44+2​5−5​​​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥0=4​4+2​5−5​​​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: nan​=a22​=2=2
=24+2​5−5​​​​
=50−425(5−5​)​63⋅22​5−5​​+4​​(−255−5​​​+52​)​
Join 50−425(5−5​)​:475+255​​
50−425(5−5​)​
Convert element to fraction: 50=450⋅4​=450⋅4​−425(5−5​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=450⋅4−25(5−5​)​
Multiply the numbers: 50⋅4=200=4200−25(5−5​)​
Expand 200−25(5−5​):75+255​
200−25(5−5​)
Expand −25(5−5​):−125+255​
−25(5−5​)
Apply the distributive law: a(b−c)=ab−aca=−25,b=5,c=5​=−25⋅5−(−25)5​
Apply minus-plus rules−(−a)=a=−25⋅5+255​
Multiply the numbers: 25⋅5=125=−125+255​
=200−125+255​
Subtract the numbers: 200−125=75=75+255​
=475+255​​
=475+255​​63⋅22​5−5​​+4​​(−255−5​​​+52​)​
Multiply 63(52​−255−5​​​)24+2​5−5​​​​:463(−55−5​​+102​)2​5−5​​+4​​
63(52​−255−5​​​)24+2​5−5​​​​
Multiply fractions: a⋅cb​=ca⋅b​=24+2​5−5​​​⋅63(52​−255−5​​​)​
Join 52​−255−5​​​:2102​−55−5​​​
52​−255−5​​​
Convert element to fraction: 52​=25⋅2​⋅2​=252​⋅2​−255−5​​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=252​⋅2−55−5​​​
Multiply the numbers: 5⋅2=10=2102​−55−5​​​
=263⋅2−55−5​​+102​​2​5−5​​+4​​
Multiply 4+2​5−5​​​⋅63⋅2102​−55−5​​​:263(−55−5​​+102​)2​5−5​​+4​​
4+2​5−5​​​⋅63⋅2102​−55−5​​​
Multiply fractions: a⋅cb​=ca⋅b​=2(102​−55−5​​)4+2​5−5​​​⋅63​
=2263(−55−5​​+102​)2​5−5​​+4​​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2(102​−55−5​​)4+2​5−5​​​⋅63​
Multiply the numbers: 2⋅2=4=463(−55−5​​+102​)2​5−5​​+4​​
=475+255​​463(−55−5​​+102​)2​5−5​​+4​​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=4(75+255​)(102​−55−5​​)4+2​5−5​​​⋅63⋅4​
Cancel the common factor: 4=75+255​(102​−55−5​​)4+2​5−5​​​⋅63​
Factor (102​−55−5​​)4+2​5−5​​​⋅63:315(22​−5−5​​)4+2​5−5​​​
(102​−55−5​​)4+2​5−5​​​⋅63
Factor 102​−55−5​​:5(22​−5−5​​)
102​−55−5​​
Rewrite as=5⋅22​−55−5​​
Factor out common term 5=5(22​−5−5​​)
=5(22​−5−5​​)4+2​5−5​​​⋅63
Refine=315(22​−5−5​​)4+2​5−5​​​
=75+255​315(22​−5−5​​)4+2​5−5​​​​
Factor 75+255​:25(3+5​)
75+255​
Rewrite as=25⋅3+255​
Factor out common term 25=25(3+5​)
=25(3+5​)315(22​−5−5​​)4+2​5−5​​​​
Cancel the common factor: 5=5(3+5​)63(−5−5​​+22​)2​5−5​​+4​​
Rationalize 5(3+5​)63(−5−5​​+22​)2​5−5​​+4​​:2063(3−5​)(−5−5​​+22​)2​5−5​​+4​​
5(3+5​)63(−5−5​​+22​)2​5−5​​+4​​
Multiply by the conjugate 3−5​3−5​​=5(3+5​)(3−5​)63(−5−5​​+22​)2​5−5​​+4​(3−5​)​
5(3+5​)(3−5​)=20
5(3+5​)(3−5​)
Expand (3+5​)(3−5​):4
(3+5​)(3−5​)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=3,b=5​=32−(5​)2
Simplify 32−(5​)2:4
32−(5​)2
32=9
32
32=9=9
(5​)2=5
(5​)2
Apply radical rule: a​=a21​=(521​)2
Apply exponent rule: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5
=9−5
Subtract the numbers: 9−5=4=4
=4
=5⋅4
Expand 5⋅4:20
5⋅4
Distribute parentheses=5⋅4
Multiply the numbers: 5⋅4=20=20
=20
=2063(−5−5​​+22​)(3−5​)2​5−5​​+4​​
=2063(−5−5​​+22​)(3−5​)2​5−5​​+4​​
=2063(−5−5​​+22​)(3−5​)2​5−5​​+4​​

Popular Examples

sin(2arccos(1/6))200cos(45)cos(17pi)tanh(0.5)cos(arctan(3/4)-arccos(7/25))
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024