Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

csc((13pi)/8)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

csc(813π​)

Solution

−22+2​​+2​2+2​​
+1
Decimal
−1.08239…
Solution steps
csc(813π​)
Rewrite using trig identities:sin(813π​)1​
csc(813π​)
Use the basic trigonometric identity: csc(x)=sin(x)1​=sin(813π​)1​
=sin(813π​)1​
Rewrite using trig identities:sin(813π​)=−22+2​​​
sin(813π​)
Rewrite using trig identities:−21−cos(45π​)​​
sin(813π​)
Write sin(813π​)as sin(2413π​​)=sin(2413π​​)
Use the Half Angle identity:sin(2θ​)=−21−cos(θ)​​
Use the Double Angle identitycos(2θ)=1−2sin2(θ)
Substitute θ with 2θ​cos(θ)=1−2sin2(2θ​)
Switch sides2sin2(2θ​)=1−cos(θ)
Divide both sides by 2sin2(2θ​)=2(1−cos(θ))​
Square root both sides
Choose the root sign according to the quadrant of 2θ​:
range[0,2π​][2π​,π][π,23π​][23π​,2π]​quadrantIIIIIIIV​sinpositivepositivenegativenegative​cospositivenegativenegativepositive​​
sin(2θ​)=−2(1−cos(θ))​​
=−21−cos(413π​)​​
cos(413π​)=cos(45π​)
cos(413π​)
Rewrite 413π​ as 2π+45π​=cos(2π+45π​)
Apply the periodicity of cos: cos(x+2π)=cos(x)cos(2π+45π​)=cos(45π​)=cos(45π​)
=−21−cos(45π​)​​
=−21−cos(45π​)​​
Rewrite using trig identities:cos(45π​)=−22​​
cos(45π​)
Rewrite using trig identities:cos(π)cos(4π​)−sin(π)sin(4π​)
cos(45π​)
Write cos(45π​)as cos(π+4π​)=cos(π+4π​)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(π)cos(4π​)−sin(π)sin(4π​)
=cos(π)cos(4π​)−sin(π)sin(4π​)
Use the following trivial identity:cos(π)=(−1)
cos(π)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Use the following trivial identity:cos(4π​)=22​​
cos(4π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
Use the following trivial identity:sin(π)=0
sin(π)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Use the following trivial identity:sin(4π​)=22​​
sin(4π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=(−1)22​​−0⋅22​​
Simplify=−22​​
=−21−(−22​​)​​
Simplify −21−(−22​​)​​:−22+2​​​
−21−(−22​​)​​
Apply rule −(−a)=a=−21+22​​​​
21+22​​​=42+2​​
21+22​​​
Join 1+22​​:22+2​​
1+22​​
Convert element to fraction: 1=21⋅2​=21⋅2​+22​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=21⋅2+2​​
Multiply the numbers: 1⋅2=2=22+2​​
=222+2​​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅22+2​​
Multiply the numbers: 2⋅2=4=42+2​​
=−42+2​​​
Simplify 42+2​​​:22+2​​​
42+2​​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥0=4​2+2​​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: nan​=a22​=2=2
=22+2​​​
=−22+2​​​
=−22+2​​​
=−22+2​​​1​
Simplify −22+2​​​1​:−22+2​​+2​2+2​​
−22+2​​​1​
Apply the fraction rule: −ba​=−ba​=−22+2​​​1​
Apply the fraction rule: cb​1​=bc​22+2​​​1​=2+2​​2​=−2+2​​2​
Rationalize −2+2​​2​:2​2+2​​−22+2​​
−2+2​​2​
Multiply by the conjugate 2+2​​2+2​​​=−2+2​​2+2​​22+2​​​
2+2​​2+2​​=2+2​
2+2​​2+2​​
Apply radical rule: a​a​=a2+2​​2+2​​=2+2​=2+2​
=−2+2​22+2​​​
Cancel 2+2​22+2​​​:1+2​2​2+2​​​
2+2​22+2​​​
Factor 2+2​:2​(2​+1)
2+2​
2=2​2​=2​2​+2​
Factor out common term 2​=2​(2​+1)
=2​(2​+1)22+2​​​
Cancel 2​(2​+1)22+2​​​:2​+12​2+2​​​
2​(2​+1)22+2​​​
Apply radical rule: na​=an1​2​=221​=221​(1+2​)22+2​​​
Apply exponent rule: xbxa​=xa−b221​21​=21−21​=2​+12−21​+12+2​​​
Subtract the numbers: 1−21​=21​=2​+1221​2+2​​​
Apply radical rule: an1​=na​221​=2​=2​+12​2+2​​​
=2​+12​2+2​​​
=−1+2​2​2+2​​​
Multiply by the conjugate 2​−12​−1​=−(2​+1)(2​−1)2​2+2​​(2​−1)​
2​2+2​​(2​−1)=22+2​​−2​2+2​​
2​2+2​​(2​−1)
=2​(2​−1)2+2​​
Apply the distributive law: a(b−c)=ab−aca=2​2+2​​,b=2​,c=1=2​2+2​​2​−2​2+2​​⋅1
=2​2​2+2​​−1⋅2​2+2​​
Simplify 2​2​2+2​​−1⋅2​2+2​​:22+2​​−2​2+2​​
2​2​2+2​​−1⋅2​2+2​​
Apply radical rule: a​a​=a2​2​=2=22+2​​−1⋅2​2+2​​
Multiply: 1⋅2​=2​=22+2​​−2​2+2​​
=22+2​​−2​2+2​​
(2​+1)(2​−1)=1
(2​+1)(2​−1)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=2​,b=1=(2​)2−12
Simplify (2​)2−12:1
(2​)2−12
Apply rule 1a=112=1=(2​)2−1
(2​)2=2
(2​)2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=2−1
Subtract the numbers: 2−1=1=1
=1
=−122+2​​−2​2+2​​​
Apply rule 1a​=a=−(22+2​​−2​2+2​​)
Distribute parentheses=−(22+2​​)−(−2​2+2​​)
Apply minus-plus rules−(−a)=a,−(a)=−a=−22+2​​+2​2+2​​
=−22+2​​+2​2+2​​
=−22+2​​+2​2+2​​

Popular Examples

cos(-70)(5sin(36))/8(13)/(tan(27))cot(-(7pi)/3)(6.3)/(cos(27))

Frequently Asked Questions (FAQ)

  • What is the value of csc((13pi)/8) ?

    The value of csc((13pi)/8) is -2sqrt(2+\sqrt{2)}+sqrt(2)sqrt(2+\sqrt{2)}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024