Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

cos^2(105)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

cos2(105∘)

Lösung

42−3​​
+1
Dezimale
0.06698…
Schritte zur Lösung
cos2(105∘)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:cos(105∘)=42​(1−3​)​
cos(105∘)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:cos(60∘)cos(45∘)−sin(60∘)sin(45∘)
cos(105∘)
Schreibe cos(105∘)als cos(60∘+45∘)=cos(60∘+45∘)
Benutze die Identität der Winkelsumme: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(60∘)cos(45∘)−sin(60∘)sin(45∘)
=cos(60∘)cos(45∘)−sin(60∘)sin(45∘)
Verwende die folgende triviale Identität:cos(60∘)=21​
cos(60∘)
cos(x) Periodizitätstabelle mit 360∘n Zyklus:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=21​
Verwende die folgende triviale Identität:cos(45∘)=22​​
cos(45∘)
cos(x) Periodizitätstabelle mit 360∘n Zyklus:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
Verwende die folgende triviale Identität:sin(60∘)=23​​
sin(60∘)
sin(x) Periodizitätstabelle mit 360∘n Zyklus:
=23​​
Verwende die folgende triviale Identität:sin(45∘)=22​​
sin(45∘)
sin(x) Periodizitätstabelle mit 360∘n Zyklus:
=22​​
=21​⋅22​​−23​​⋅22​​
Vereinfache 21​⋅22​​−23​​⋅22​​:42​(1−3​)​
21​⋅22​​−23​​⋅22​​
Klammere gleiche Terme aus 22​​=22​​(21​−23​​)
21​−23​​=21−3​​
21​−23​​
Wende Regel an ca​±cb​=ca±b​=21−3​​
=22​​⋅21−3​​
Multipliziere Brüche: ba​⋅dc​=b⋅da⋅c​=2⋅2(1−3​)2​​
Multipliziere die Zahlen: 2⋅2=4=42​(1−3​)​
=42​(1−3​)​
=(42​(1−3​)​)2
Vereinfache (42​(1−3​)​)2:42−3​​
(42​(1−3​)​)2
Wende Exponentenregel an: (ba​)c=bcac​=42(2​(1−3​))2​
Wende Exponentenregel an: (a⋅b)n=anbn(2​(1−3​))2=(2​)2(1−3​)2=42(2​)2(1−3​)2​
(2​)2:2
Wende Radikal Regel an: a​=a21​=(221​)2
Wende Exponentenregel an: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multipliziere Brüche: a⋅cb​=ca⋅b​=21⋅2​
Streiche die gemeinsamen Faktoren: 2=1
=2
=422(1−3​)2​
Faktorisiere 42:24
Faktorisiere 4=22=(22)2
Vereinfache (22)2:24
(22)2
Wende Exponentenregel an: (ab)c=abc=22⋅2
Multipliziere die Zahlen: 2⋅2=4=24
=24
=242(1−3​)2​
Streiche die gemeinsamen Faktoren: 2=23(1−3​)2​
(1−3​)2=4−23​
(1−3​)2
Wende Formel für perfekte quadratische Gleichungen an: (a−b)2=a2−2ab+b2a=1,b=3​
=12−2⋅1⋅3​+(3​)2
Vereinfache 12−2⋅1⋅3​+(3​)2:4−23​
12−2⋅1⋅3​+(3​)2
Wende Regel an 1a=112=1=1−2⋅1⋅3​+(3​)2
2⋅1⋅3​=23​
2⋅1⋅3​
Multipliziere die Zahlen: 2⋅1=2=23​
(3​)2=3
(3​)2
Wende Radikal Regel an: a​=a21​=(321​)2
Wende Exponentenregel an: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multipliziere Brüche: a⋅cb​=ca⋅b​=21⋅2​
Streiche die gemeinsamen Faktoren: 2=1
=3
=1−23​+3
Addiere die Zahlen: 1+3=4=4−23​
=4−23​
=234−23​​
Faktorisiere 4−23​:2(2−3​)
4−23​
Schreibe um=2⋅2−23​
Klammere gleiche Terme aus 2=2(2−3​)
=232(2−3​)​
Streiche die gemeinsamen Faktoren: 2=222−3​​
22=4=42−3​​
=42−3​​

Beliebte Beispiele

sin(-(4pi)/5)sin(−54π​)-5sin((3pi)/2)−5sin(23π​)arcsin((11.2)/(22.1))arcsin(22.111.2​)arccos((-1)/4)arccos(4−1​)-7cos(-pi/6)−7cos(−6π​)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024