Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(arctan(4/3)-arctan(1/7))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(arctan(34​)−arctan(71​))

Solution

1
Solution steps
tan(arctan(34​)−arctan(71​))
Rewrite using trig identities:arctan(34​)−arctan(71​)=arctan(1)
arctan(34​)−arctan(71​)
Use the Sum to Product identity: arctan(s)−arctan(t)=arctan(1+sts−t​)=arctan(1+34​⋅71​34​−71​​)
Simplify:1+34​⋅71​34​−71​​=1
1+34​⋅71​34​−71​​
34​⋅71​=214​
34​⋅71​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=3⋅74⋅1​
Multiply the numbers: 4⋅1=4=3⋅74​
Multiply the numbers: 3⋅7=21=214​
=1+214​34​−71​​
Join 34​−71​:2125​
34​−71​
Least Common Multiplier of 3,7:21
3,7
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 7:7
7
7 is a prime number, therefore no factorization is possible=7
Multiply each factor the greatest number of times it occurs in either 3 or 7=3⋅7
Multiply the numbers: 3⋅7=21=21
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 21
For 34​:multiply the denominator and numerator by 734​=3⋅74⋅7​=2128​
For 71​:multiply the denominator and numerator by 371​=7⋅31⋅3​=213​
=2128​−213​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2128−3​
Subtract the numbers: 28−3=25=2125​
=1+214​2125​​
Apply the fraction rule: acb​​=c⋅ab​=21(1+214​)25​
Join 1+214​:2125​
1+214​
Convert element to fraction: 1=211⋅21​=211⋅21​+214​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=211⋅21+4​
1⋅21+4=25
1⋅21+4
Multiply the numbers: 1⋅21=21=21+4
Add the numbers: 21+4=25=25
=2125​
=21⋅2125​25​
Multiply 21⋅2125​:25
21⋅2125​
Multiply fractions: a⋅cb​=ca⋅b​=2125⋅21​
Cancel the common factor: 21=25
=2525​
Apply rule aa​=1=1
=arctan(1)
=tan(arctan(1))
Rewrite using trig identities:tan(arctan(1))=1
Use the following identity: tan(arctan(x))=x
=1
=1

Popular Examples

1/2 sin(2(pi/2))arcsin((1.5)/(2.6))arccos(2sqrt(2))arccos((-2)/3)arctan(0.55)

Frequently Asked Questions (FAQ)

  • What is the value of tan(arctan(4/3)-arctan(1/7)) ?

    The value of tan(arctan(4/3)-arctan(1/7)) is 1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024