Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(81)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(81∘)

Solution

32​5+5​​+10​5+5​​+11+45​​
+1
Decimal
6.31375…
Solution steps
tan(81∘)
Rewrite using trig identities:1+cos(162∘)1−cos(162∘)​​
tan(81∘)
Write tan(81∘)as tan(2162∘​)=tan(2162∘​)
Use the Half Angle identity:tan(2θ​)=1+cos(θ)1−cos(θ)​​
Rewrite using trig identities:tan2(θ)=1+cos(2θ)1−cos(2θ)​
Use the following identity
tan(θ)=cos(θ)sin(θ)​
Square both sidestan2(θ)=cos2(θ)sin2(θ)​
Rewrite using trig identities:sin2(θ)=21−cos(2θ)​
Use the Double Angle identitycos(2θ)=1−2sin2(θ)
Switch sides2sin2(θ)−1=−cos(2θ)
Add 1 to both sides2sin2(θ)=1−cos(2θ)
Divide both sides by 2sin2(θ)=21−cos(2θ)​
Rewrite using trig identities:cos2(θ)=21+cos(2θ)​
Use the Double Angle identitycos(2θ)=2cos2(θ)−1
Switch sides2cos2(θ)−1=cos(2θ)
Add 1 to both sides2sin2(θ)=1+cos(2θ)
Divide both sides by 2cos2(θ)=21+cos(2θ)​
tan2(θ)=21+cos(2θ)​21−cos(2θ)​​
Simplifytan2(θ)=1+cos(2θ)1−cos(2θ)​
Substitute θ with 2θ​tan2(2θ​)=1+cos(2⋅2θ​)1−cos(2⋅2θ​)​
Simplifytan2(2θ​)=1+cos(θ)1−cos(θ)​
Square root both sides
Choose the root sign according to the quadrant of 2θ​:
range[0,90∘][90∘,180∘]​quadrantIII​tanpositivenegative​​
tan(2θ​)=1+cos(θ)1−cos(θ)​​
=1+cos(162∘)1−cos(162∘)​​
=1+cos(162∘)1−cos(162∘)​​
Rewrite using trig identities:cos(162∘)=−42​5+5​​​
cos(162∘)
Rewrite using trig identities:−cos(18∘)
cos(162∘)
Use the basic trigonometric identity: cos(x)=−cos(180∘−x)=−cos(180∘−162∘)
Simplify=−cos(18∘)
=−cos(18∘)
Rewrite using trig identities:cos(18∘)=42​5+5​​​
cos(18∘)
Rewrite using trig identities:21+cos(36∘)​​
cos(18∘)
Write cos(18∘)as cos(236∘​)=cos(236∘​)
Use the Half Angle identity:cos(2θ​)=21+cos(θ)​​
Use the Double Angle identitycos(2θ)=2cos2(θ)−1
Substitute θ with 2θ​cos(θ)=2cos2(2θ​)−1
Switch sides2cos2(2θ​)=1+cos(θ)
Divide both sides by 2cos2(2θ​)=2(1+cos(θ))​
Square root both sides
Choose the root sign according to the quadrant of 2θ​:
range[0,90∘][90∘,180∘][180∘,270∘][270∘,360∘]​quadrantIIIIIIIV​sinpositivepositivenegativenegative​cospositivenegativenegativepositive​​
cos(2θ​)=2(1+cos(θ))​​
=21+cos(36∘)​​
=21+cos(36∘)​​
Rewrite using trig identities:cos(36∘)=45​+1​
cos(36∘)
Show that: cos(36∘)−sin(18∘)=21​
Use the following product to sum identity: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 21​=2sin(18∘)cos(36∘)21​=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21​=cos(90∘−54∘)−sin(18∘)
21​=cos(36∘)−sin(18∘)
Show that: cos(36∘)+sin(18∘)=45​​
Use the factorization rule: a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
Refine(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 2cos(36∘)sin(18∘)=21​(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
Substitute cos(36∘)−sin(18∘)=21​(cos(36∘)+sin(18∘))2−(21​)2=1
Refine(cos(36∘)+sin(18∘))2−41​=1
Add 41​ to both sides(cos(36∘)+sin(18∘))2−41​+41​=1+41​
Refine(cos(36∘)+sin(18∘))2=45​
Take the square root of both sidescos(36∘)+sin(18∘)=±45​​
cos(36∘)cannot be negativesin(18∘)cannot be negativecos(36∘)+sin(18∘)=45​​
Add the following equationscos(36∘)+sin(18∘)=25​​((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25​​+21​)
Refinecos(36∘)=45​+1​
=45​+1​
=21+45​+1​​​
Simplify 21+45​+1​​​:42​5+5​​​
21+45​+1​​​
21+45​+1​​=85+5​​
21+45​+1​​
Join 1+45​+1​:45+5​​
1+45​+1​
Convert element to fraction: 1=41⋅4​=41⋅4​+45​+1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4+5​+1​
1⋅4+5​+1=5+5​
1⋅4+5​+1
Multiply the numbers: 1⋅4=4=4+5​+1
Add the numbers: 4+1=5=5+5​
=45+5​​
=245+5​​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅25+5​​
Multiply the numbers: 4⋅2=8=85+5​​
=85+5​​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥0=8​5+5​​​
8​=22​
8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: nab​=na​nb​=2​22​
Apply radical rule: nan​=a22​=2=22​
=22​5+5​​​
Rationalize 22​5+5​​​:42​5+5​​​
22​5+5​​​
Multiply by the conjugate 2​2​​=22​2​5+5​​2​​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=42​5+5​​​
=42​5+5​​​
=42​5+5​​​
=−42​5+5​​​
=1−42​5+5​​​1−(−42​5+5​​​)​​
Simplify 1−42​5+5​​​1−(−42​5+5​​​)​​:32​5+5​​+10​5+5​​+11+45​​
1−42​5+5​​​1−(−42​5+5​​​)​​
Apply rule −(−a)=a=1−42​5+5​​​1+42​5+5​​​​​
1−42​5+5​​​1+42​5+5​​​​=4−2​5+5​​4+2​5+5​​​
1−42​5+5​​​1+42​5+5​​​​
Join 1−42​5+5​​​:44−2​5+5​​​
1−42​5+5​​​
Convert element to fraction: 1=41⋅4​=41⋅4​−42​5+5​​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−2​5+5​​​
Multiply the numbers: 1⋅4=4=44−2​5+5​​​
=44−2​5+5​​​1+42​5+5​​​​
Join 1+42​5+5​​​:44+2​5+5​​​
1+42​5+5​​​
Convert element to fraction: 1=41⋅4​=41⋅4​+42​5+5​​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4+2​5+5​​​
Multiply the numbers: 1⋅4=4=44+2​5+5​​​
=44−2​5+5​​​44+2​5+5​​​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=4(4−2​5+5​​)(4+2​5+5​​)⋅4​
Cancel the common factor: 4=4−2​5+5​​4+2​5+5​​​
=4−2​5+5​​4+2​5+5​​​​
4−2​5+5​​4+2​5+5​​​=32​5+5​​+10​5+5​​+11+45​
4−2​5+5​​4+2​5+5​​​
Multiply by the conjugate 4+2​5+5​​4+2​5+5​​​=(4−2​5+5​​)(4+2​5+5​​)(4+2​5+5​​)(4+2​5+5​​)​
(4+2​5+5​​)(4+2​5+5​​)=82​5+5​​+26+25​
(4+2​5+5​​)(4+2​5+5​​)
Apply exponent rule: ab⋅ac=ab+c(4+2​5+5​​)(4+2​5+5​​)=(4+2​5+5​​)1+1=(4+2​5+5​​)1+1
Add the numbers: 1+1=2=(4+2​5+5​​)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=4,b=2​5+5​​
=42+2⋅42​5+5​​+(2​5+5​​)2
Simplify 42+2⋅42​5+5​​+(2​5+5​​)2:82​5+5​​+26+25​
42+2⋅42​5+5​​+(2​5+5​​)2
42=16
42
42=16=16
2⋅42​5+5​​=82​5+5​​
2⋅42​5+5​​
Multiply the numbers: 2⋅4=8=82​5+5​​
(2​5+5​​)2=2(5+5​)
(2​5+5​​)2
Apply exponent rule: (a⋅b)n=anbn=(2​)2(5+5​​)2
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=2(5+5​​)2
(5+5​​)2:5+5​
Apply radical rule: a​=a21​=((5+5​)21​)2
Apply exponent rule: (ab)c=abc=(5+5​)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5+5​
=2(5+5​)
=16+82​5+5​​+2(5+5​)
Expand 2(5+5​):10+25​
2(5+5​)
Apply the distributive law: a(b+c)=ab+aca=2,b=5,c=5​=2⋅5+25​
Multiply the numbers: 2⋅5=10=10+25​
=16+82​5+5​​+10+25​
Add the numbers: 16+10=26=82​5+5​​+26+25​
=82​5+5​​+26+25​
(4−2​5+5​​)(4+2​5+5​​)=6−25​
(4−2​5+5​​)(4+2​5+5​​)
2​5+5​​=10+25​​
2​5+5​​
Apply radical rule: a​b​=a⋅b​2​5+5​​=2(5+5​)​=2(5+5​)​
Expand 2(5+5​):10+25​
2(5+5​)
Apply the distributive law: a(b+c)=ab+aca=2,b=5,c=5​=2⋅5+25​
Multiply the numbers: 2⋅5=10=10+25​
=10+25​​
=(−10+25​​+4)(2​5+5​​+4)
2​5+5​​=10+25​​
2​5+5​​
Apply radical rule: a​b​=a⋅b​2​5+5​​=2(5+5​)​=2(5+5​)​
Expand 2(5+5​):10+25​
2(5+5​)
Apply the distributive law: a(b+c)=ab+aca=2,b=5,c=5​=2⋅5+25​
Multiply the numbers: 2⋅5=10=10+25​
=10+25​​
=(−10+25​​+4)(10+25​​+4)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=4,b=10+25​​=42−(10+25​​)2
Simplify 42−(10+25​​)2:6−25​
42−(10+25​​)2
42=16
42
42=16=16
(10+25​​)2=10+25​
(10+25​​)2
Apply radical rule: a​=a21​=((10+25​)21​)2
Apply exponent rule: (ab)c=abc=(10+25​)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=10+25​
=16−(10+25​)
−(10+25​):−10−25​
−(10+25​)
Distribute parentheses=−(10)−(25​)
Apply minus-plus rules+(−a)=−a=−10−25​
=16−10−25​
Subtract the numbers: 16−10=6=6−25​
=6−25​
=6−25​82​5+5​​+26+25​​
Factor 82​5+5​​+26+25​:2(42​5+5​​+13+5​)
82​5+5​​+26+25​
Rewrite as=2⋅42​5+5​​+2⋅13+25​
Factor out common term 2=2(42​5+5​​+13+5​)
=6−25​2(42​5+5​​+13+5​)​
Factor 6−25​:2(3−5​)
6−25​
Rewrite as=2⋅3−25​
Factor out common term 2=2(3−5​)
=2(3−5​)2(42​5+5​​+13+5​)​
Divide the numbers: 22​=1=(3−5​)42​5+5​​+13+5​​
Remove parentheses: (a)=a=3−5​42​5+5​​+13+5​​
Multiply by the conjugate 3+5​3+5​​=(3−5​)(3+5​)(42​5+5​​+13+5​)(3+5​)​
(42​5+5​​+13+5​)(3+5​)=122​5+5​​+410​5+5​​+44+165​
(42​5+5​​+13+5​)(3+5​)
Distribute parentheses=42​5+5​​⋅3+42​5+5​​5​+13⋅3+135​+5​⋅3+5​5​
=4⋅32​5+5​​+42​5​5+5​​+13⋅3+135​+35​+5​5​
Simplify 4⋅32​5+5​​+42​5​5+5​​+13⋅3+135​+35​+5​5​:122​5+5​​+410​5+5​​+44+165​
4⋅32​5+5​​+42​5​5+5​​+13⋅3+135​+35​+5​5​
Add similar elements: 135​+35​=165​=4⋅32​5+5​​+42​5​5+5​​+13⋅3+165​+5​5​
4⋅32​5+5​​=122​5+5​​
4⋅32​5+5​​
Multiply the numbers: 4⋅3=12=122​5+5​​
42​5​5+5​​=410​5+5​​
42​5​5+5​​
Apply radical rule: a​b​=a⋅b​2​5​5+5​​=2⋅5(5+5​)​=42⋅5(5+5​)​
Multiply the numbers: 2⋅5=10=410(5+5​)​
Apply radical rule: nab​=na​nb​, assuming a≥0,b≥010(5+5​)​=10​5+5​​=410​5+5​​
13⋅3=39
13⋅3
Multiply the numbers: 13⋅3=39=39
5​5​=5
5​5​
Apply radical rule: a​a​=a5​5​=5=5
=122​5+5​​+410​5+5​​+39+165​+5
Add the numbers: 39+5=44=122​5+5​​+410​5+5​​+44+165​
=122​5+5​​+410​5+5​​+44+165​
(3−5​)(3+5​)=4
(3−5​)(3+5​)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=3,b=5​=32−(5​)2
Simplify 32−(5​)2:4
32−(5​)2
32=9
32
32=9=9
(5​)2=5
(5​)2
Apply radical rule: a​=a21​=(521​)2
Apply exponent rule: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5
=9−5
Subtract the numbers: 9−5=4=4
=4
=4122​5+5​​+410​5+5​​+44+165​​
Factor 122​5+5​​+410​5+5​​+44+165​:4(32​5+5​​+10​5+5​​+11+45​)
122​5+5​​+410​5+5​​+44+165​
Rewrite as=4⋅32​5+5​​+410​5+5​​+4⋅11+4⋅45​
Factor out common term 4=4(32​5+5​​+10​5+5​​+11+45​)
=44(32​5+5​​+10​5+5​​+11+45​)​
Divide the numbers: 44​=1=32​5+5​​+10​5+5​​+11+45​
=32​5+5​​+10​5+5​​+11+45​​
=32​5+5​​+10​5+5​​+11+45​​

Popular Examples

sec((16pi)/3)cos(240)-cos(0)-cot(-pi/4)-sin(3pi)sec(32)

Frequently Asked Questions (FAQ)

  • What is the value of tan(81) ?

    The value of tan(81) is sqrt(3\sqrt{2)sqrt(5+\sqrt{5)}+sqrt(10)sqrt(5+\sqrt{5)}+11+4sqrt(5)}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024