Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

3tan^3(x)=tan(x)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

3tan3(x)=tan(x)

Lösung

x=πn,x=65π​+πn,x=6π​+πn
+1
Grad
x=0∘+180∘n,x=150∘+180∘n,x=30∘+180∘n
Schritte zur Lösung
3tan3(x)=tan(x)
Löse mit Substitution
3tan3(x)=tan(x)
Angenommen: tan(x)=u3u3=u
3u3=u:u=0,u=−33​​,u=33​​
3u3=u
Verschiebe uauf die linke Seite
3u3=u
Subtrahiere u von beiden Seiten3u3−u=u−u
Vereinfache3u3−u=0
3u3−u=0
Faktorisiere 3u3−u:u(3​u+1)(3​u−1)
3u3−u
Klammere gleiche Terme aus u:u(3u2−1)
3u3−u
Wende Exponentenregel an: ab+c=abacu3=u2u=3u2u−u
Klammere gleiche Terme aus u=u(3u2−1)
=u(3u2−1)
Faktorisiere 3u2−1:(3​u+1)(3​u−1)
3u2−1
Schreibe 3u2−1um: (3​u)2−12
3u2−1
Wende Radikal Regel an: a=(a​)23=(3​)2=(3​)2u2−1
Schreibe 1um: 12=(3​)2u2−12
Wende Exponentenregel an: ambm=(ab)m(3​)2u2=(3​u)2=(3​u)2−12
=(3​u)2−12
Wende Formel zur Differenz von zwei Quadraten an:x2−y2=(x+y)(x−y)(3​u)2−12=(3​u+1)(3​u−1)=(3​u+1)(3​u−1)
=u(3​u+1)(3​u−1)
u(3​u+1)(3​u−1)=0
Anwendung des Nullfaktorprinzips: Wenn ab=0dann a=0oder b=0u=0or3​u+1=0or3​u−1=0
Löse 3​u+1=0:u=−33​​
3​u+1=0
Verschiebe 1auf die rechte Seite
3​u+1=0
Subtrahiere 1 von beiden Seiten3​u+1−1=0−1
Vereinfache3​u=−1
3​u=−1
Teile beide Seiten durch 3​
3​u=−1
Teile beide Seiten durch 3​3​3​u​=3​−1​
Vereinfache
3​3​u​=3​−1​
Vereinfache 3​3​u​:u
3​3​u​
Streiche die gemeinsamen Faktoren: 3​=u
Vereinfache 3​−1​:−33​​
3​−1​
Wende Bruchregel an: b−a​=−ba​=−3​1​
Rationalisiere −3​1​:−33​​
−3​1​
Multipliziere mit dem Konjugat 3​3​​=−3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
Wende Radikal Regel an: a​a​=a3​3​=3=3
=−33​​
=−33​​
u=−33​​
u=−33​​
u=−33​​
Löse 3​u−1=0:u=33​​
3​u−1=0
Verschiebe 1auf die rechte Seite
3​u−1=0
Füge 1 zu beiden Seiten hinzu3​u−1+1=0+1
Vereinfache3​u=1
3​u=1
Teile beide Seiten durch 3​
3​u=1
Teile beide Seiten durch 3​3​3​u​=3​1​
Vereinfache
3​3​u​=3​1​
Vereinfache 3​3​u​:u
3​3​u​
Streiche die gemeinsamen Faktoren: 3​=u
Vereinfache 3​1​:33​​
3​1​
Multipliziere mit dem Konjugat 3​3​​=3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
Wende Radikal Regel an: a​a​=a3​3​=3=3
=33​​
u=33​​
u=33​​
u=33​​
Die Lösungen sindu=0,u=−33​​,u=33​​
Setze in u=tan(x)eintan(x)=0,tan(x)=−33​​,tan(x)=33​​
tan(x)=0,tan(x)=−33​​,tan(x)=33​​
tan(x)=0:x=πn
tan(x)=0
Allgemeine Lösung für tan(x)=0
tan(x) Periodizitätstabelle mit πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=0+πn
x=0+πn
Löse x=0+πn:x=πn
x=0+πn
0+πn=πnx=πn
x=πn
tan(x)=−33​​:x=65π​+πn
tan(x)=−33​​
Allgemeine Lösung für tan(x)=−33​​
tan(x) Periodizitätstabelle mit πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=65π​+πn
x=65π​+πn
tan(x)=33​​:x=6π​+πn
tan(x)=33​​
Allgemeine Lösung für tan(x)=33​​
tan(x) Periodizitätstabelle mit πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=6π​+πn
x=6π​+πn
Kombiniere alle Lösungenx=πn,x=65π​+πn,x=6π​+πn

Graph

Sorry, your browser does not support this application
Interaktives Diagramm anzeigen

Beliebte Beispiele

sin(2x)=-(sqrt(3))/2 ,0<= x<= 2pisec(90)(sin(0))/0sin(18)2+cos^2(x)=3sin^2(x)
LernwerkzeugeKI-Mathe-LöserArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-ErweiterungSymbolab Math Solver API
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenAGB'sCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024