Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

2sec(x)=1+cos(x)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

2sec(x)=1+cos(x)

Lösung

x=2πn
+1
Grad
x=0∘+360∘n
Schritte zur Lösung
2sec(x)=1+cos(x)
Subtrahiere 1+cos(x) von beiden Seiten2sec(x)−1−cos(x)=0
Umschreiben mit Hilfe von Trigonometrie-Identitäten
−1−cos(x)+2sec(x)
Verwende die grundlegende trigonometrische Identität: cos(x)=sec(x)1​=−1−sec(x)1​+2sec(x)
−1−sec(x)1​+2sec(x)=0
Löse mit Substitution
−1−sec(x)1​+2sec(x)=0
Angenommen: sec(x)=u−1−u1​+2u=0
−1−u1​+2u=0:u=1,u=−21​
−1−u1​+2u=0
Multipliziere beide Seiten mit u
−1−u1​+2u=0
Multipliziere beide Seiten mit u−1⋅u−u1​u+2uu=0⋅u
Vereinfache
−1⋅u−u1​u+2uu=0⋅u
Vereinfache −1⋅u:−u
−1⋅u
Multipliziere: 1⋅u=u=−u
Vereinfache −u1​u:−1
−u1​u
Multipliziere Brüche: a⋅cb​=ca⋅b​=−u1⋅u​
Streiche die gemeinsamen Faktoren: u=−1
Vereinfache 2uu:2u2
2uu
Wende Exponentenregel an: ab⋅ac=ab+cuu=u1+1=2u1+1
Addiere die Zahlen: 1+1=2=2u2
Vereinfache 0⋅u:0
0⋅u
Wende Regel an 0⋅a=0=0
−u−1+2u2=0
−u−1+2u2=0
−u−1+2u2=0
Löse −u−1+2u2=0:u=1,u=−21​
−u−1+2u2=0
Schreibe in der Standard Form ax2+bx+c=02u2−u−1=0
Löse mit der quadratischen Formel
2u2−u−1=0
Quadratische Formel für Gliechungen:
Für a=2,b=−1,c=−1u1,2​=2⋅2−(−1)±(−1)2−4⋅2(−1)​​
u1,2​=2⋅2−(−1)±(−1)2−4⋅2(−1)​​
(−1)2−4⋅2(−1)​=3
(−1)2−4⋅2(−1)​
Wende Regel an −(−a)=a=(−1)2+4⋅2⋅1​
(−1)2=1
(−1)2
Wende Exponentenregel an: (−a)n=an,wenn n gerade ist(−1)2=12=12
Wende Regel an 1a=1=1
4⋅2⋅1=8
4⋅2⋅1
Multipliziere die Zahlen: 4⋅2⋅1=8=8
=1+8​
Addiere die Zahlen: 1+8=9=9​
Faktorisiere die Zahl: 9=32=32​
Wende Radikal Regel an: 32​=3=3
u1,2​=2⋅2−(−1)±3​
Trenne die Lösungenu1​=2⋅2−(−1)+3​,u2​=2⋅2−(−1)−3​
u=2⋅2−(−1)+3​:1
2⋅2−(−1)+3​
Wende Regel an −(−a)=a=2⋅21+3​
Addiere die Zahlen: 1+3=4=2⋅24​
Multipliziere die Zahlen: 2⋅2=4=44​
Wende Regel an aa​=1=1
u=2⋅2−(−1)−3​:−21​
2⋅2−(−1)−3​
Wende Regel an −(−a)=a=2⋅21−3​
Subtrahiere die Zahlen: 1−3=−2=2⋅2−2​
Multipliziere die Zahlen: 2⋅2=4=4−2​
Wende Bruchregel an: b−a​=−ba​=−42​
Streiche die gemeinsamen Faktoren: 2=−21​
Die Lösungen für die quadratische Gleichung sind: u=1,u=−21​
u=1,u=−21​
Überprüfe die Lösungen
Bestimme unbestimmte (Singularitäts-)Punkte:u=0
Nimm den/die Nenner von −1−u1​+2u und vergleiche mit Null
u=0
Die folgenden Punkte sind unbestimmtu=0
Kombine die undefinierten Punkte mit den Lösungen:
u=1,u=−21​
Setze in u=sec(x)einsec(x)=1,sec(x)=−21​
sec(x)=1,sec(x)=−21​
sec(x)=1:x=2πn
sec(x)=1
Allgemeine Lösung für sec(x)=1
sec(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
x=0+2πn
x=0+2πn
Löse x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
sec(x)=−21​:Keine Lösung
sec(x)=−21​
sec(x)≤−1orsec(x)≥1KeineLo¨sung
Kombiniere alle Lösungenx=2πn

Graph

Sorry, your browser does not support this application
Interaktives Diagramm anzeigen

Beliebte Beispiele

sin^2(x)+cos(x)-cos^2(x)=08(1-sin^2(x))+2sin(x)-7=0cot(5x)=1tan^2(x)-6tan(x)+1=0tan^2(x)-2tan(x)=1
LernwerkzeugeKI-Mathe-LöserArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-ErweiterungSymbolab Math Solver API
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenAGB'sCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024