해법
cos2(x)+cos2(3x)=1
해법
x=0.78539…+2πn,x=2π−0.78539…+2πn,x=2.35619…+2πn,x=−2.35619…+2πn,x=0.39269…+2πn,x=2π−0.39269…+2πn,x=2.74889…+2πn,x=−2.74889…+2πn,x=1.17809…+2πn,x=2π−1.17809…+2πn,x=1.96349…+2πn,x=−1.96349…+2πn
+1
솔루션 단계
cos2(x)+cos2(3x)=1
빼다 1 양쪽에서cos2(x)+cos2(3x)−1=0
삼각성을 사용하여 다시 쓰기
−1+10cos2(x)+16cos6(x)−24cos4(x)=0
대체로 해결
cos(x)=21,cos(x)=−21,cos(x)=22+2,cos(x)=−22+2,cos(x)=22−2,cos(x)=−22−2
cos(x)=21:x=arccos(21)+2πn,x=2π−arccos(21)+2πn
cos(x)=−21:x=arccos(−21)+2πn,x=−arccos(−21)+2πn
cos(x)=22+2:x=arccos(22+2)+2πn,x=2π−arccos(22+2)+2πn
cos(x)=−22+2:x=arccos(−22+2)+2πn,x=−arccos(−22+2)+2πn
cos(x)=22−2:x=arccos(22−2)+2πn,x=2π−arccos(22−2)+2πn
cos(x)=−22−2:x=arccos(−22−2)+2πn,x=−arccos(−22−2)+2πn
모든 솔루션 결합x=arccos(21)+2πn,x=2π−arccos(21)+2πn,x=arccos(−21)+2πn,x=−arccos(−21)+2πn,x=arccos(22+2)+2πn,x=2π−arccos(22+2)+2πn,x=arccos(−22+2)+2πn,x=−arccos(−22+2)+2πn,x=arccos(22−2)+2πn,x=2π−arccos(22−2)+2πn,x=arccos(−22−2)+2πn,x=−arccos(−22−2)+2πn
해를 10진수 형식으로 표시x=0.78539…+2πn,x=2π−0.78539…+2πn,x=2.35619…+2πn,x=−2.35619…+2πn,x=0.39269…+2πn,x=2π−0.39269…+2πn,x=2.74889…+2πn,x=−2.74889…+2πn,x=1.17809…+2πn,x=2π−1.17809…+2πn,x=1.96349…+2πn,x=−1.96349…+2πn