Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos^2(x)+cos^2(3x)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos2(x)+cos2(3x)=1

Solution

x=0.78539…+2πn,x=2π−0.78539…+2πn,x=2.35619…+2πn,x=−2.35619…+2πn,x=0.39269…+2πn,x=2π−0.39269…+2πn,x=2.74889…+2πn,x=−2.74889…+2πn,x=1.17809…+2πn,x=2π−1.17809…+2πn,x=1.96349…+2πn,x=−1.96349…+2πn
+1
Degrees
x=45∘+360∘n,x=315∘+360∘n,x=135∘+360∘n,x=−135∘+360∘n,x=22.5∘+360∘n,x=337.5∘+360∘n,x=157.5∘+360∘n,x=−157.5∘+360∘n,x=67.5∘+360∘n,x=292.5∘+360∘n,x=112.5∘+360∘n,x=−112.5∘+360∘n
Solution steps
cos2(x)+cos2(3x)=1
Subtract 1 from both sidescos2(x)+cos2(3x)−1=0
Rewrite using trig identities
−1+cos2(3x)+cos2(x)
cos(3x)=4cos3(x)−3cos(x)
cos(3x)
Rewrite using trig identities
cos(3x)
Rewrite as=cos(2x+x)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(2x)cos(x)−sin(2x)sin(x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=cos(2x)cos(x)−2sin(x)cos(x)sin(x)
Simplify cos(2x)cos(x)−2sin(x)cos(x)sin(x):cos(x)cos(2x)−2sin2(x)cos(x)
cos(2x)cos(x)−2sin(x)cos(x)sin(x)
2sin(x)cos(x)sin(x)=2sin2(x)cos(x)
2sin(x)cos(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=2cos(x)sin1+1(x)
Add the numbers: 1+1=2=2cos(x)sin2(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
Use the Double Angle identity: cos(2x)=2cos2(x)−1=(2cos2(x)−1)cos(x)−2sin2(x)cos(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
Expand (2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x):4cos3(x)−3cos(x)
(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
=cos(x)(2cos2(x)−1)−2cos(x)(1−cos2(x))
Expand cos(x)(2cos2(x)−1):2cos3(x)−cos(x)
cos(x)(2cos2(x)−1)
Apply the distributive law: a(b−c)=ab−aca=cos(x),b=2cos2(x),c=1=cos(x)2cos2(x)−cos(x)1
=2cos2(x)cos(x)−1cos(x)
Simplify 2cos2(x)cos(x)−1⋅cos(x):2cos3(x)−cos(x)
2cos2(x)cos(x)−1cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
Add the numbers: 2+1=3=2cos3(x)
1⋅cos(x)=cos(x)
1cos(x)
Multiply: 1⋅cos(x)=cos(x)=cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)−2(1−cos2(x))cos(x)
Expand −2cos(x)(1−cos2(x)):−2cos(x)+2cos3(x)
−2cos(x)(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=−2cos(x),b=1,c=cos2(x)=−2cos(x)1−(−2cos(x))cos2(x)
Apply minus-plus rules−(−a)=a=−2⋅1cos(x)+2cos2(x)cos(x)
Simplify −2⋅1⋅cos(x)+2cos2(x)cos(x):−2cos(x)+2cos3(x)
−2⋅1cos(x)+2cos2(x)cos(x)
2⋅1⋅cos(x)=2cos(x)
2⋅1cos(x)
Multiply the numbers: 2⋅1=2=2cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
Add the numbers: 2+1=3=2cos3(x)
=−2cos(x)+2cos3(x)
=−2cos(x)+2cos3(x)
=2cos3(x)−cos(x)−2cos(x)+2cos3(x)
Simplify 2cos3(x)−cos(x)−2cos(x)+2cos3(x):4cos3(x)−3cos(x)
2cos3(x)−cos(x)−2cos(x)+2cos3(x)
Group like terms=2cos3(x)+2cos3(x)−cos(x)−2cos(x)
Add similar elements: 2cos3(x)+2cos3(x)=4cos3(x)=4cos3(x)−cos(x)−2cos(x)
Add similar elements: −cos(x)−2cos(x)=−3cos(x)=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=−1+(4cos3(x)−3cos(x))2+cos2(x)
Simplify −1+(4cos3(x)−3cos(x))2+cos2(x):−1+16cos6(x)−24cos4(x)+10cos2(x)
−1+(4cos3(x)−3cos(x))2+cos2(x)
(4cos3(x)−3cos(x))2:16cos6(x)−24cos4(x)+9cos2(x)
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=4cos3(x),b=3cos(x)
=(4cos3(x))2−2⋅4cos3(x)⋅3cos(x)+(3cos(x))2
Simplify (4cos3(x))2−2⋅4cos3(x)⋅3cos(x)+(3cos(x))2:16cos6(x)−24cos4(x)+9cos2(x)
(4cos3(x))2−2⋅4cos3(x)⋅3cos(x)+(3cos(x))2
(4cos3(x))2=16cos6(x)
(4cos3(x))2
Apply exponent rule: (a⋅b)n=anbn=42(cos3(x))2
(cos3(x))2:cos6(x)
Apply exponent rule: (ab)c=abc=cos3⋅2(x)
Multiply the numbers: 3⋅2=6=cos6(x)
=42cos6(x)
42=16=16cos6(x)
2⋅4cos3(x)⋅3cos(x)=24cos4(x)
2⋅4cos3(x)⋅3cos(x)
Multiply the numbers: 2⋅4⋅3=24=24cos3(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos3(x)cos(x)=cos3+1(x)=24cos3+1(x)
Add the numbers: 3+1=4=24cos4(x)
(3cos(x))2=9cos2(x)
(3cos(x))2
Apply exponent rule: (a⋅b)n=anbn=32cos2(x)
32=9=9cos2(x)
=16cos6(x)−24cos4(x)+9cos2(x)
=16cos6(x)−24cos4(x)+9cos2(x)
=−1+16cos6(x)−24cos4(x)+9cos2(x)+cos2(x)
Add similar elements: 9cos2(x)+cos2(x)=10cos2(x)=−1+16cos6(x)−24cos4(x)+10cos2(x)
=−1+16cos6(x)−24cos4(x)+10cos2(x)
−1+10cos2(x)+16cos6(x)−24cos4(x)=0
Solve by substitution
−1+10cos2(x)+16cos6(x)−24cos4(x)=0
Let: cos(x)=u−1+10u2+16u6−24u4=0
−1+10u2+16u6−24u4=0:u=21​​,u=−21​​,u=22+2​​​,u=−22+2​​​,u=22−2​​​,u=−22−2​​​
−1+10u2+16u6−24u4=0
Write in the standard form an​xn+…+a1​x+a0​=016u6−24u4+10u2−1=0
Rewrite the equation with v=u2,v2=u4 and v3=u616v3−24v2+10v−1=0
Solve 16v3−24v2+10v−1=0:v=21​,v=42+2​​,v=42−2​​
16v3−24v2+10v−1=0
Factor 16v3−24v2+10v−1:(2v−1)(8v2−8v+1)
16v3−24v2+10v−1
Use the rational root theorem
a0​=1,an​=16
The dividers of a0​:1,The dividers of an​:1,2,4,8,16
Therefore, check the following rational numbers:±1,2,4,8,161​
21​ is a root of the expression, so factor out 2v−1
=(2v−1)2v−116v3−24v2+10v−1​
2v−116v3−24v2+10v−1​=8v2−8v+1
2v−116v3−24v2+10v−1​
Divide 2v−116v3−24v2+10v−1​:2v−116v3−24v2+10v−1​=8v2+2v−1−16v2+10v−1​
Divide the leading coefficients of the numerator 16v3−24v2+10v−1
and the divisor 2v−1:2v16v3​=8v2
Quotient=8v2
Multiply 2v−1 by 8v2:16v3−8v2Subtract 16v3−8v2 from 16v3−24v2+10v−1 to get new remainderRemainder=−16v2+10v−1
Therefore2v−116v3−24v2+10v−1​=8v2+2v−1−16v2+10v−1​
=8v2+2v−1−16v2+10v−1​
Divide 2v−1−16v2+10v−1​:2v−1−16v2+10v−1​=−8v+2v−12v−1​
Divide the leading coefficients of the numerator −16v2+10v−1
and the divisor 2v−1:2v−16v2​=−8v
Quotient=−8v
Multiply 2v−1 by −8v:−16v2+8vSubtract −16v2+8v from −16v2+10v−1 to get new remainderRemainder=2v−1
Therefore2v−1−16v2+10v−1​=−8v+2v−12v−1​
=8v2−8v+2v−12v−1​
Divide 2v−12v−1​:2v−12v−1​=1
Divide the leading coefficients of the numerator 2v−1
and the divisor 2v−1:2v2v​=1
Quotient=1
Multiply 2v−1 by 1:2v−1Subtract 2v−1 from 2v−1 to get new remainderRemainder=0
Therefore2v−12v−1​=1
=8v2−8v+1
=(2v−1)(8v2−8v+1)
(2v−1)(8v2−8v+1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=02v−1=0or8v2−8v+1=0
Solve 2v−1=0:v=21​
2v−1=0
Move 1to the right side
2v−1=0
Add 1 to both sides2v−1+1=0+1
Simplify2v=1
2v=1
Divide both sides by 2
2v=1
Divide both sides by 222v​=21​
Simplifyv=21​
v=21​
Solve 8v2−8v+1=0:v=42+2​​,v=42−2​​
8v2−8v+1=0
Solve with the quadratic formula
8v2−8v+1=0
Quadratic Equation Formula:
For a=8,b=−8,c=1v1,2​=2⋅8−(−8)±(−8)2−4⋅8⋅1​​
v1,2​=2⋅8−(−8)±(−8)2−4⋅8⋅1​​
(−8)2−4⋅8⋅1​=42​
(−8)2−4⋅8⋅1​
Apply exponent rule: (−a)n=an,if n is even(−8)2=82=82−4⋅8⋅1​
Multiply the numbers: 4⋅8⋅1=32=82−32​
82=64=64−32​
Subtract the numbers: 64−32=32=32​
Prime factorization of 32:25
32
32divides by 232=16⋅2=2⋅16
16divides by 216=8⋅2=2⋅2⋅8
8divides by 28=4⋅2=2⋅2⋅2⋅4
4divides by 24=2⋅2=2⋅2⋅2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2⋅2⋅2
=25
=25​
Apply exponent rule: ab+c=ab⋅ac=24⋅2​
Apply radical rule: =2​24​
Apply radical rule: 24​=224​=22=222​
Refine=42​
v1,2​=2⋅8−(−8)±42​​
Separate the solutionsv1​=2⋅8−(−8)+42​​,v2​=2⋅8−(−8)−42​​
v=2⋅8−(−8)+42​​:42+2​​
2⋅8−(−8)+42​​
Apply rule −(−a)=a=2⋅88+42​​
Multiply the numbers: 2⋅8=16=168+42​​
Factor 8+42​:4(2+2​)
8+42​
Rewrite as=4⋅2+42​
Factor out common term 4=4(2+2​)
=164(2+2​)​
Cancel the common factor: 4=42+2​​
v=2⋅8−(−8)−42​​:42−2​​
2⋅8−(−8)−42​​
Apply rule −(−a)=a=2⋅88−42​​
Multiply the numbers: 2⋅8=16=168−42​​
Factor 8−42​:4(2−2​)
8−42​
Rewrite as=4⋅2−42​
Factor out common term 4=4(2−2​)
=164(2−2​)​
Cancel the common factor: 4=42−2​​
The solutions to the quadratic equation are:v=42+2​​,v=42−2​​
The solutions arev=21​,v=42+2​​,v=42−2​​
v=21​,v=42+2​​,v=42−2​​
Substitute back v=u2,solve for u
Solve u2=21​:u=21​​,u=−21​​
u2=21​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=21​​,u=−21​​
Solve u2=42+2​​:u=22+2​​​,u=−22+2​​​
u2=42+2​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=42+2​​​,u=−42+2​​​
42+2​​​=22+2​​​
42+2​​​
Apply radical rule: assuming a≥0,b≥0=4​2+2​​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=22+2​​​
−42+2​​​=−22+2​​​
−42+2​​​
Simplify 42+2​​​:22+2​​​
42+2​​​
Apply radical rule: assuming a≥0,b≥0=4​2+2​​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=22+2​​​
=−22+2​​​
u=22+2​​​,u=−22+2​​​
Solve u2=42−2​​:u=22−2​​​,u=−22−2​​​
u2=42−2​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=42−2​​​,u=−42−2​​​
42−2​​​=22−2​​​
42−2​​​
Apply radical rule: assuming a≥0,b≥0=4​2−2​​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=22−2​​​
−42−2​​​=−22−2​​​
−42−2​​​
Simplify 42−2​​​:22−2​​​
42−2​​​
Apply radical rule: assuming a≥0,b≥0=4​2−2​​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=22−2​​​
=−22−2​​​
u=22−2​​​,u=−22−2​​​
The solutions are
u=21​​,u=−21​​,u=22+2​​​,u=−22+2​​​,u=22−2​​​,u=−22−2​​​
Substitute back u=cos(x)cos(x)=21​​,cos(x)=−21​​,cos(x)=22+2​​​,cos(x)=−22+2​​​,cos(x)=22−2​​​,cos(x)=−22−2​​​
cos(x)=21​​,cos(x)=−21​​,cos(x)=22+2​​​,cos(x)=−22+2​​​,cos(x)=22−2​​​,cos(x)=−22−2​​​
cos(x)=21​​:x=arccos(21​​)+2πn,x=2π−arccos(21​​)+2πn
cos(x)=21​​
Apply trig inverse properties
cos(x)=21​​
General solutions for cos(x)=21​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(21​​)+2πn,x=2π−arccos(21​​)+2πn
x=arccos(21​​)+2πn,x=2π−arccos(21​​)+2πn
cos(x)=−21​​:x=arccos(−21​​)+2πn,x=−arccos(−21​​)+2πn
cos(x)=−21​​
Apply trig inverse properties
cos(x)=−21​​
General solutions for cos(x)=−21​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−21​​)+2πn,x=−arccos(−21​​)+2πn
x=arccos(−21​​)+2πn,x=−arccos(−21​​)+2πn
cos(x)=22+2​​​:x=arccos(22+2​​​)+2πn,x=2π−arccos(22+2​​​)+2πn
cos(x)=22+2​​​
Apply trig inverse properties
cos(x)=22+2​​​
General solutions for cos(x)=22+2​​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(22+2​​​)+2πn,x=2π−arccos(22+2​​​)+2πn
x=arccos(22+2​​​)+2πn,x=2π−arccos(22+2​​​)+2πn
cos(x)=−22+2​​​:x=arccos(−22+2​​​)+2πn,x=−arccos(−22+2​​​)+2πn
cos(x)=−22+2​​​
Apply trig inverse properties
cos(x)=−22+2​​​
General solutions for cos(x)=−22+2​​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−22+2​​​)+2πn,x=−arccos(−22+2​​​)+2πn
x=arccos(−22+2​​​)+2πn,x=−arccos(−22+2​​​)+2πn
cos(x)=22−2​​​:x=arccos(22−2​​​)+2πn,x=2π−arccos(22−2​​​)+2πn
cos(x)=22−2​​​
Apply trig inverse properties
cos(x)=22−2​​​
General solutions for cos(x)=22−2​​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(22−2​​​)+2πn,x=2π−arccos(22−2​​​)+2πn
x=arccos(22−2​​​)+2πn,x=2π−arccos(22−2​​​)+2πn
cos(x)=−22−2​​​:x=arccos(−22−2​​​)+2πn,x=−arccos(−22−2​​​)+2πn
cos(x)=−22−2​​​
Apply trig inverse properties
cos(x)=−22−2​​​
General solutions for cos(x)=−22−2​​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−22−2​​​)+2πn,x=−arccos(−22−2​​​)+2πn
x=arccos(−22−2​​​)+2πn,x=−arccos(−22−2​​​)+2πn
Combine all the solutionsx=arccos(21​​)+2πn,x=2π−arccos(21​​)+2πn,x=arccos(−21​​)+2πn,x=−arccos(−21​​)+2πn,x=arccos(22+2​​​)+2πn,x=2π−arccos(22+2​​​)+2πn,x=arccos(−22+2​​​)+2πn,x=−arccos(−22+2​​​)+2πn,x=arccos(22−2​​​)+2πn,x=2π−arccos(22−2​​​)+2πn,x=arccos(−22−2​​​)+2πn,x=−arccos(−22−2​​​)+2πn
Show solutions in decimal formx=0.78539…+2πn,x=2π−0.78539…+2πn,x=2.35619…+2πn,x=−2.35619…+2πn,x=0.39269…+2πn,x=2π−0.39269…+2πn,x=2.74889…+2πn,x=−2.74889…+2πn,x=1.17809…+2πn,x=2π−1.17809…+2πn,x=1.96349…+2πn,x=−1.96349…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(x)= 16/31/((sec(a)-tan(a)))=sec(a)+tan(x)-2=tan^2(x)3sin^2(x)-1=cos^4(x)sin(3*x)=cos(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for cos^2(x)+cos^2(3x)=1 ?

    The general solution for cos^2(x)+cos^2(3x)=1 is
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024