Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin^3(x)-5sin^2(x)+2sin(x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin3(x)−5sin2(x)+2sin(x)=0

Solution

x=2πn,x=π+2πn,x=6π​+2πn,x=65π​+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n,x=30∘+360∘n,x=150∘+360∘n
Solution steps
2sin3(x)−5sin2(x)+2sin(x)=0
Solve by substitution
2sin3(x)−5sin2(x)+2sin(x)=0
Let: sin(x)=u2u3−5u2+2u=0
2u3−5u2+2u=0:u=0,u=21​,u=2
2u3−5u2+2u=0
Factor 2u3−5u2+2u:u(2u−1)(u−2)
2u3−5u2+2u
Factor out common term u:u(2u2−5u+2)
2u3−5u2+2u
Apply exponent rule: ab+c=abacu2=uu=2u2u−5uu+2u
Factor out common term u=u(2u2−5u+2)
=u(2u2−5u+2)
Factor 2u2−5u+2:(2u−1)(u−2)
2u2−5u+2
Break the expression into groups
2u2−5u+2
Definition
Factors of 4:1,2,4
4
Divisors (Factors)
Find the Prime factors of 4:2,2
4
4divides by 24=2⋅2=2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2
Add the prime factors: 2
Add 1 and the number 4 itself1,4
The factors of 41,2,4
Negative factors of 4:−1,−2,−4
Multiply the factors by −1 to get the negative factors−1,−2,−4
For every two factors such that u∗v=4,check if u+v=−5
Check u=1,v=4:u∗v=4,u+v=5⇒FalseCheck u=2,v=2:u∗v=4,u+v=4⇒False
u=−1,v=−4
Group into (ax2+ux)+(vx+c)(2u2−u)+(−4u+2)
=(2u2−u)+(−4u+2)
Factor out ufrom 2u2−u:u(2u−1)
2u2−u
Apply exponent rule: ab+c=abacu2=uu=2uu−u
Factor out common term u=u(2u−1)
Factor out −2from −4u+2:−2(2u−1)
−4u+2
Rewrite 4 as 2⋅2=−2⋅2u+2
Factor out common term −2=−2(2u−1)
=u(2u−1)−2(2u−1)
Factor out common term 2u−1=(2u−1)(u−2)
=u(2u−1)(u−2)
u(2u−1)(u−2)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u=0or2u−1=0oru−2=0
Solve 2u−1=0:u=21​
2u−1=0
Move 1to the right side
2u−1=0
Add 1 to both sides2u−1+1=0+1
Simplify2u=1
2u=1
Divide both sides by 2
2u=1
Divide both sides by 222u​=21​
Simplifyu=21​
u=21​
Solve u−2=0:u=2
u−2=0
Move 2to the right side
u−2=0
Add 2 to both sidesu−2+2=0+2
Simplifyu=2
u=2
The solutions areu=0,u=21​,u=2
Substitute back u=sin(x)sin(x)=0,sin(x)=21​,sin(x)=2
sin(x)=0,sin(x)=21​,sin(x)=2
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
sin(x)=21​:x=6π​+2πn,x=65π​+2πn
sin(x)=21​
General solutions for sin(x)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=6π​+2πn,x=65π​+2πn
x=6π​+2πn,x=65π​+2πn
sin(x)=2:No Solution
sin(x)=2
−1≤sin(x)≤1NoSolution
Combine all the solutionsx=2πn,x=π+2πn,x=6π​+2πn,x=65π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(cos^2(a)-3cos(a)+2)/(sin^2(a))=1(sin(x)-(sqrt(2)))/2 =0cos(2x)=5-6cos^2(x)cos^4(x)=0.37sin^2(x)=((sqrt(3)))/2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024