Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos^6(x)=-cos^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos6(x)=−cos2(x)

Solution

x=2π​+2πn,x=23π​+2πn
+1
Degrees
x=90∘+360∘n,x=270∘+360∘n
Solution steps
cos6(x)=−cos2(x)
Solve by substitution
cos6(x)=−cos2(x)
Let: cos(x)=uu6=−u2
u6=−u2:u=0,u=2​1​+2​1​i,u=−2​1​−2​1​i,u=−2​1​+2​1​i,u=2​1​−2​1​i
u6=−u2
Move u2to the left side
u6=−u2
Add u2 to both sidesu6+u2=−u2+u2
Simplifyu6+u2=0
u6+u2=0
Rewrite the equation with a=u2 and a3=u6a3+a=0
Solve a3+a=0:a=0,a=i,a=−i
a3+a=0
Factor a3+a:a(a2+1)
a3+a
Apply exponent rule: ab+c=abaca3=a2a=a2a+a
Factor out common term a=a(a2+1)
a(a2+1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0a=0ora2+1=0
Solve a2+1=0:a=i,a=−i
a2+1=0
Move 1to the right side
a2+1=0
Subtract 1 from both sidesa2+1−1=0−1
Simplifya2=−1
a2=−1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
a=−1​,a=−−1​
Simplify −1​:i
−1​
Apply imaginary number rule: −1​=i=i
Simplify −−1​:−i
−−1​
Apply imaginary number rule: −1​=i=−i
a=i,a=−i
The solutions area=0,a=i,a=−i
a=0,a=i,a=−i
Substitute back a=u2,solve for u
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
Solve u2=i:u=2​1​+2​1​i,u=−2​1​−2​1​i
u2=i
Substitute u=a+bi(a+bi)2=i
Expand (a+bi)2:(a2−b2)+2iab
(a+bi)2
=(a+ib)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=a,b=bi
=a2+2abi+(bi)2
(bi)2=−b2
(bi)2
Apply exponent rule: (a⋅b)n=anbn=i2b2
i2=−1
i2
Apply imaginary number rule: i2=−1=−1
=(−1)b2
Refine=−b2
=a2+2iab−b2
Rewrite a2+2iab−b2 in standard complex form: (a2−b2)+2abi
a2+2iab−b2
Group the real part and the imaginary part of the complex number=(a2−b2)+2abi
=(a2−b2)+2abi
(a2−b2)+2iab=i
Rewrite i in standard complex form: 0+i(a2−b2)+2iab=0+i
Complex numbers can be equal only if their real and imaginary parts are equalRewrite as system of equations:[a2−b2=02ab=1​]
[a2−b2=02ab=1​]:(a=2​1​,a=−2​1​,​b=2​1​b=−2​1​​)
[a2−b2=02ab=1​]
Isolate afor 2ab=1:a=2b1​
2ab=1
Divide both sides by 2b
2ab=1
Divide both sides by 2b2b2ab​=2b1​
Simplifya=2b1​
a=2b1​
Plug the solutions a=2b1​ into a2−b2=0
For a2−b2=0, subsitute a with 2b1​:b=2​1​,b=−2​1​
For a2−b2=0, subsitute a with 2b1​(2b1​)2−b2=0
Solve (2b1​)2−b2=0:b=2​1​,b=−2​1​
(2b1​)2−b2=0
Simplify (2b1​)2:4b21​
(2b1​)2
Apply exponent rule: (ba​)c=bcac​=(2b)212​
Apply exponent rule: (a⋅b)n=anbn(2b)2=22b2=22b212​
Apply rule 1a=112=1=22b21​
22=4=4b21​
4b21​−b2=0
Multiply both sides by 4b2
4b21​−b2=0
Multiply both sides by 4b24b21​⋅4b2−b2⋅4b2=0⋅4b2
Simplify
4b21​⋅4b2−b2⋅4b2=0⋅4b2
Simplify 4b21​⋅4b2:1
4b21​⋅4b2
Multiply fractions: a⋅cb​=ca⋅b​=4b21⋅4b2​
Cancel the common factor: 4=b21⋅b2​
Cancel the common factor: b2=1
Simplify −b2⋅4b2:−4b4
−b2⋅4b2
Apply exponent rule: ab⋅ac=ab+cb2b2=b2+2=−4b2+2
Add the numbers: 2+2=4=−4b4
Simplify 0⋅4b2:0
0⋅4b2
Apply rule 0⋅a=0=0
1−4b4=0
1−4b4=0
1−4b4=0
Solve 1−4b4=0:b=2​1​,b=−2​1​
1−4b4=0
Move 1to the right side
1−4b4=0
Subtract 1 from both sides1−4b4−1=0−1
Simplify−4b4=−1
−4b4=−1
Divide both sides by −4
−4b4=−1
Divide both sides by −4−4−4b4​=−4−1​
Simplifyb4=41​
b4=41​
For xn=f(a), n is even, the solutions are
Apply radical rule:
Apply radical rule:
Factor the number: 4=22
Apply exponent rule: abc=(ab)c22=20.5⋅4=(2​)4
Apply radical rule: assuming a≥0=2​
=2​1​
Apply radical rule:
Apply radical rule:
Factor the number: 4=22
Apply exponent rule: abc=(ab)c22=20.5⋅4=(2​)4
Apply radical rule: assuming a≥0=2​
=−2​1​
b=2​1​,b=−2​1​
b=2​1​,b=−2​1​
Verify Solutions
Find undefined (singularity) points:b=0
Take the denominator(s) of (2b1​)2−b2 and compare to zero
Solve 2b=0:b=0
2b=0
Divide both sides by 2
2b=0
Divide both sides by 222b​=20​
Simplifyb=0
b=0
The following points are undefinedb=0
Combine undefined points with solutions:
b=2​1​,b=−2​1​
Plug the solutions b=2​1​,b=−2​1​ into 2ab=1
For 2ab=1, subsitute b with 2​1​:a=2​1​
For 2ab=1, subsitute b with 2​1​2a2​1​=1
Solve 2a2​1​=1:a=2​1​
2a2​1​=1
Multiply both sides by 2​
2a2​1​=1
Multiply both sides by 2​2a2​1​2​=1⋅2​
Simplify
2a2​1​2​=1⋅2​
Simplify 2a2​1​2​:2a
2a2​1​2​
Convert 2​to fraction :12​​
2​
Convert element to fraction: 2​=12​​=12​​
=2a2​1​⋅12​​
Cross-cancel common factor: 2​=2a⋅1
Apply rule: a⋅1=a=2a
Simplify 1⋅2​:2​
1⋅2​
Apply rule: 1⋅a=a=2​
2a=2​
2a=2​
2a=2​
Divide both sides by 2
2a=2​
Divide both sides by 222a​=22​​
Simplify
22a​=22​​
Simplify 22a​:a
22a​
Cancel the common factor: 2=a
Simplify 22​​:2​1​
22​​
Apply radical rule: a=a​a​2=2​2​=2​2​2​​
Cancel the common factor: 2​=2​1​
a=2​1​
a=2​1​
a=2​1​
For 2ab=1, subsitute b with −2​1​:a=−2​1​
For 2ab=1, subsitute b with −2​1​2a(−2​1​)=1
Solve 2a(−2​1​)=1:a=−2​1​
2a(−2​1​)=1
Divide both sides by 2(−2​1​)
2a(−2​1​)=1
Divide both sides by 2(−2​1​)2(−2​1​)2a(−2​1​)​=2(−2​1​)1​
Simplify
2(−2​1​)2a(−2​1​)​=2(−2​1​)1​
Simplify 2(−2​1​)2a(−2​1​)​:a
2(−2​1​)2a(−2​1​)​
Simplify 2(−2​1​)2a(−2​1​)​:−2⋅2​1​−2a2​1​​
2(−2​1​)2a(−2​1​)​
Apply rule: a(−b)=−ab2a(−2​1​)=−2a2​1​=2(−2​1​)−2a2​1​​
Apply rule: a(−b)=−ab2(−2​1​)=−2⋅2​1​=−2⋅2​1​−2a2​1​​
=−2⋅2​1​−2a2​1​​
Cancel the common factor: −2=2​1​a2​1​​
Cancel the common factor: 2​1​=a
Simplify 2(−2​1​)1​:−2​1​
2(−2​1​)1​
Apply rule: a(−b)=−ab2(−2​1​)=−2⋅2​1​=−2⋅2​1​1​
−2⋅2​1​=−2​
−2⋅2​1​
Convert 2to fraction :12​
2
Convert element to fraction: 2=12​=12​
=−12​⋅2​1​
Apply the fraction rule: ba​⋅dc​=b⋅da⋅c​12​⋅2​1​=1⋅2​2⋅1​=−1⋅2​2⋅1​
1⋅2​2⋅1​=2​
1⋅2​2⋅1​
1⋅2​2⋅1​=2​2​
1⋅2​2⋅1​
Multiply the numbers: 2⋅1=2=1⋅2​2​
Apply rule: 1⋅a=a1⋅2​=2​=2​2​
=2​2​
Apply radical rule: a=a​a​2=2​2​=2​2​2​​
Cancel the common factor: 2​=2​
=−2​
=−2​1​
Apply the fraction rule: −ba​=−ba​=−2​1​
a=−2​1​
a=−2​1​
a=−2​1​
Verify solutions by plugging them into the original equations
Check the solutions by plugging them into a2−b2=0
Remove the ones that don't agree with the equation.
Check the solution a=−2​1​,b=−2​1​:True
a2−b2=0
Plug in a=−2​1​,b=−2​1​(−2​1​)2−(−2​1​)2=0
Refine0=0
True
Check the solution a=2​1​,b=2​1​:True
a2−b2=0
Plug in a=2​1​,b=2​1​(2​1​)2−(2​1​)2=0
Refine0=0
True
Check the solutions by plugging them into 2ab=1
Remove the ones that don't agree with the equation.
Check the solution a=−2​1​,b=−2​1​:True
2ab=1
Plug in a=−2​1​,b=−2​1​2(−2​1​)(−2​1​)=1
Refine1=1
True
Check the solution a=2​1​,b=2​1​:True
2ab=1
Plug in a=2​1​,b=2​1​2⋅2​1​⋅2​1​=1
Refine1=1
True
Therefore, the final solutions for a2−b2=0,2ab=1 are (a=2​1​,a=−2​1​,​b=2​1​b=−2​1​​)
Substitute back u=a+biu=2​1​+2​1​i,u=−2​1​−2​1​i
Solve u2=−i:u=−2​1​+2​1​i,u=2​1​−2​1​i
u2=−i
Substitute u=a+bi(a+bi)2=−i
Expand (a+bi)2:(a2−b2)+2iab
(a+bi)2
=(a+ib)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=a,b=bi
=a2+2abi+(bi)2
(bi)2=−b2
(bi)2
Apply exponent rule: (a⋅b)n=anbn=i2b2
i2=−1
i2
Apply imaginary number rule: i2=−1=−1
=(−1)b2
Refine=−b2
=a2+2iab−b2
Rewrite a2+2iab−b2 in standard complex form: (a2−b2)+2abi
a2+2iab−b2
Group the real part and the imaginary part of the complex number=(a2−b2)+2abi
=(a2−b2)+2abi
(a2−b2)+2iab=−i
Rewrite −i in standard complex form: 0−i(a2−b2)+2iab=0−i
Complex numbers can be equal only if their real and imaginary parts are equalRewrite as system of equations:[a2−b2=02ab=−1​]
[a2−b2=02ab=−1​]:(a=−2​1​,a=2​1​,​b=2​1​b=−2​1​​)
[a2−b2=02ab=−1​]
Isolate afor 2ab=−1:a=−2b1​
2ab=−1
Divide both sides by 2b
2ab=−1
Divide both sides by 2b2b2ab​=2b−1​
Simplifya=−2b1​
a=−2b1​
Plug the solutions a=−2b1​ into a2−b2=0
For a2−b2=0, subsitute a with −2b1​:b=2​1​,b=−2​1​
For a2−b2=0, subsitute a with −2b1​(−2b1​)2−b2=0
Solve (−2b1​)2−b2=0:b=2​1​,b=−2​1​
(−2b1​)2−b2=0
Simplify (−2b1​)2:4b21​
(−2b1​)2
Apply exponent rule: (−a)n=an,if n is even(−2b1​)2=(2b1​)2=(2b1​)2
Apply exponent rule: (ba​)c=bcac​=(2b)212​
Apply exponent rule: (a⋅b)n=anbn(2b)2=22b2=22b212​
Apply rule 1a=112=1=22b21​
22=4=4b21​
4b21​−b2=0
Multiply both sides by 4b2
4b21​−b2=0
Multiply both sides by 4b24b21​⋅4b2−b2⋅4b2=0⋅4b2
Simplify
4b21​⋅4b2−b2⋅4b2=0⋅4b2
Simplify 4b21​⋅4b2:1
4b21​⋅4b2
Multiply fractions: a⋅cb​=ca⋅b​=4b21⋅4b2​
Cancel the common factor: 4=b21⋅b2​
Cancel the common factor: b2=1
Simplify −b2⋅4b2:−4b4
−b2⋅4b2
Apply exponent rule: ab⋅ac=ab+cb2b2=b2+2=−4b2+2
Add the numbers: 2+2=4=−4b4
Simplify 0⋅4b2:0
0⋅4b2
Apply rule 0⋅a=0=0
1−4b4=0
1−4b4=0
1−4b4=0
Solve 1−4b4=0:b=2​1​,b=−2​1​
1−4b4=0
Move 1to the right side
1−4b4=0
Subtract 1 from both sides1−4b4−1=0−1
Simplify−4b4=−1
−4b4=−1
Divide both sides by −4
−4b4=−1
Divide both sides by −4−4−4b4​=−4−1​
Simplifyb4=41​
b4=41​
For xn=f(a), n is even, the solutions are
Apply radical rule:
Apply radical rule:
Factor the number: 4=22
Apply exponent rule: abc=(ab)c22=20.5⋅4=(2​)4
Apply radical rule: assuming a≥0=2​
=2​1​
Apply radical rule:
Apply radical rule:
Factor the number: 4=22
Apply exponent rule: abc=(ab)c22=20.5⋅4=(2​)4
Apply radical rule: assuming a≥0=2​
=−2​1​
b=2​1​,b=−2​1​
b=2​1​,b=−2​1​
Verify Solutions
Find undefined (singularity) points:b=0
Take the denominator(s) of (−2b1​)2−b2 and compare to zero
Solve 2b=0:b=0
2b=0
Divide both sides by 2
2b=0
Divide both sides by 222b​=20​
Simplifyb=0
b=0
The following points are undefinedb=0
Combine undefined points with solutions:
b=2​1​,b=−2​1​
Plug the solutions b=2​1​,b=−2​1​ into 2ab=−1
For 2ab=−1, subsitute b with 2​1​:a=−2​1​
For 2ab=−1, subsitute b with 2​1​2a2​1​=−1
Solve 2a2​1​=−1:a=−2​1​
2a2​1​=−1
Multiply both sides by 2​
2a2​1​=−1
Multiply both sides by 2​2a2​1​2​=(−1)2​
Simplify
2a2​1​2​=(−1)2​
Simplify 2a2​1​2​:2a
2a2​1​2​
Convert 2​to fraction :12​​
2​
Convert element to fraction: 2​=12​​=12​​
=2a2​1​⋅12​​
Cross-cancel common factor: 2​=2a⋅1
Apply rule: a⋅1=a=2a
Simplify (−1)2​:−2​
(−1)2​
Apply rule: (−a)=−a(−1)=−1=−1⋅2​
Apply rule: 1⋅a=a=−2​
2a=−2​
2a=−2​
2a=−2​
Divide both sides by 2
2a=−2​
Divide both sides by 222a​=2−2​​
Simplify
22a​=2−2​​
Simplify 22a​:a
22a​
Cancel the common factor: 2=a
Simplify 2−2​​:−2​1​
2−2​​
Apply radical rule: a=a​a​2=2​2​=2​2​−2​​
Cancel the common factor: 2​=2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
a=−2​1​
a=−2​1​
a=−2​1​
For 2ab=−1, subsitute b with −2​1​:a=2​1​
For 2ab=−1, subsitute b with −2​1​2a(−2​1​)=−1
Solve 2a(−2​1​)=−1:a=2​1​
2a(−2​1​)=−1
Divide both sides by 2(−2​1​)
2a(−2​1​)=−1
Divide both sides by 2(−2​1​)2(−2​1​)2a(−2​1​)​=2(−2​1​)−1​
Simplify
2(−2​1​)2a(−2​1​)​=2(−2​1​)−1​
Simplify 2(−2​1​)2a(−2​1​)​:a
2(−2​1​)2a(−2​1​)​
Simplify 2(−2​1​)2a(−2​1​)​:−2⋅2​1​−2a2​1​​
2(−2​1​)2a(−2​1​)​
Apply rule: a(−b)=−ab2a(−2​1​)=−2a2​1​=2(−2​1​)−2a2​1​​
Apply rule: a(−b)=−ab2(−2​1​)=−2⋅2​1​=−2⋅2​1​−2a2​1​​
=−2⋅2​1​−2a2​1​​
Cancel the common factor: −2=2​1​a2​1​​
Cancel the common factor: 2​1​=a
Simplify 2(−2​1​)−1​:2​1​
2(−2​1​)−1​
Apply the fraction rule: b−a​=−ba​=−2(−2​1​)1​
Apply rule: a(−b)=−ab2(−2​1​)=−2⋅2​1​=−−2⋅2​1​1​
−2⋅2​1​=−2​
−2⋅2​1​
Convert 2to fraction :12​
2
Convert element to fraction: 2=12​=12​
=−12​⋅2​1​
Apply the fraction rule: ba​⋅dc​=b⋅da⋅c​12​⋅2​1​=1⋅2​2⋅1​=−1⋅2​2⋅1​
1⋅2​2⋅1​=2​
1⋅2​2⋅1​
1⋅2​2⋅1​=2​2​
1⋅2​2⋅1​
Multiply the numbers: 2⋅1=2=1⋅2​2​
Apply rule: 1⋅a=a1⋅2​=2​=2​2​
=2​2​
Apply radical rule: a=a​a​2=2​2​=2​2​2​​
Cancel the common factor: 2​=2​
=−2​
=−−2​1​
Apply the fraction rule: −ba​=−ba​−2​1​=−2​1​=−(−2​1​)
Apply rule: −(−a)=a−(−2​1​)=2​1​=2​1​
a=2​1​
a=2​1​
a=2​1​
Verify solutions by plugging them into the original equations
Check the solutions by plugging them into a2−b2=0
Remove the ones that don't agree with the equation.
Check the solution a=2​1​,b=−2​1​:True
a2−b2=0
Plug in a=2​1​,b=−2​1​(2​1​)2−(−2​1​)2=0
Refine0=0
True
Check the solution a=−2​1​,b=2​1​:True
a2−b2=0
Plug in a=−2​1​,b=2​1​(−2​1​)2−(2​1​)2=0
Refine0=0
True
Check the solutions by plugging them into 2ab=−1
Remove the ones that don't agree with the equation.
Check the solution a=2​1​,b=−2​1​:True
2ab=−1
Plug in a=2​1​,b=−2​1​2⋅2​1​(−2​1​)=−1
Refine−1=−1
True
Check the solution a=−2​1​,b=2​1​:True
2ab=−1
Plug in a=−2​1​,b=2​1​2(−2​1​)2​1​=−1
Refine−1=−1
True
Therefore, the final solutions for a2−b2=0,2ab=−1 are (a=−2​1​,a=2​1​,​b=2​1​b=−2​1​​)
Substitute back u=a+biu=−2​1​+2​1​i,u=2​1​−2​1​i
The solutions are
u=0,u=2​1​+2​1​i,u=−2​1​−2​1​i,u=−2​1​+2​1​i,u=2​1​−2​1​i
Substitute back u=cos(x)cos(x)=0,cos(x)=2​1​+2​1​i,cos(x)=−2​1​−2​1​i,cos(x)=−2​1​+2​1​i,cos(x)=2​1​−2​1​i
cos(x)=0,cos(x)=2​1​+2​1​i,cos(x)=−2​1​−2​1​i,cos(x)=−2​1​+2​1​i,cos(x)=2​1​−2​1​i
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
cos(x)=2​1​+2​1​i:No Solution
cos(x)=2​1​+2​1​i
Simplify 2​1​+2​1​i:22​​+i22​​
2​1​+2​1​i
Multiply 2​1​i:2​i​
2​1​i
Multiply fractions: a⋅cb​=ca⋅b​=2​1i​
Multiply: 1i=i=2​i​
=2​1​+2​i​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2​1+i​
Rationalize 2​1+i​:22​(1+i)​
2​1+i​
Multiply by the conjugate 2​2​​=2​2​(1+i)2​​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​(1+i)​
=22​(1+i)​
Rewrite 22​(1+i)​ in standard complex form: 22​​+22​​i
22​(1+i)​
Apply radical rule: 2​=221​=2221​(1+i)​
Apply exponent rule: xbxa​=xb−a1​21221​​=21−21​1​=21−21​1+i​
Subtract the numbers: 1−21​=21​=221​1+i​
Apply radical rule: 221​=2​=2​1+i​
Apply the fraction rule: ca±b​=ca​±cb​2​1+i​=2​1​+2​i​=2​1​+2​i​
2​1​=22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
=2​1​+22​​i
2​1​=22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
=22​​+22​​i
=22​​+22​​i
NoSolution
cos(x)=−2​1​−2​1​i:No Solution
cos(x)=−2​1​−2​1​i
Simplify −2​1​−2​1​i:−22​​−i22​​
−2​1​−2​1​i
Multiply 2​1​i:2​i​
2​1​i
Multiply fractions: a⋅cb​=ca⋅b​=2​1i​
Multiply: 1i=i=2​i​
=−2​1​−2​i​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2​−1−i​
Rationalize 2​−1−i​:22​(−1−i)​
2​−1−i​
Multiply by the conjugate 2​2​​=2​2​(−1−i)2​​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​(−1−i)​
=22​(−1−i)​
Rewrite 22​(−1−i)​ in standard complex form: −22​​−22​​i
22​(−1−i)​
Apply radical rule: 2​=221​=2221​(−1−i)​
Apply exponent rule: xbxa​=xb−a1​21221​​=21−21​1​=21−21​−1−i​
Subtract the numbers: 1−21​=21​=221​−1−i​
Apply radical rule: 221​=2​=2​−1−i​
Apply the fraction rule: ca±b​=ca​±cb​2​−1−i​=−2​1​−2​i​=−2​1​−2​i​
−2​1​=−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−2​1​−22​​i
−2​1​=−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​−22​​i
=−22​​−22​​i
NoSolution
cos(x)=−2​1​+2​1​i:No Solution
cos(x)=−2​1​+2​1​i
Simplify −2​1​+2​1​i:−22​​+i22​​
−2​1​+2​1​i
Multiply 2​1​i:2​i​
2​1​i
Multiply fractions: a⋅cb​=ca⋅b​=2​1i​
Multiply: 1i=i=2​i​
=−2​1​+2​i​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2​−1+i​
Rationalize 2​−1+i​:22​(−1+i)​
2​−1+i​
Multiply by the conjugate 2​2​​=2​2​(−1+i)2​​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​(−1+i)​
=22​(−1+i)​
Rewrite 22​(−1+i)​ in standard complex form: −22​​+22​​i
22​(−1+i)​
Apply radical rule: 2​=221​=2221​(−1+i)​
Apply exponent rule: xbxa​=xb−a1​21221​​=21−21​1​=21−21​−1+i​
Subtract the numbers: 1−21​=21​=221​−1+i​
Apply radical rule: 221​=2​=2​−1+i​
Apply the fraction rule: ca±b​=ca​±cb​2​−1+i​=−2​1​+2​i​=−2​1​+2​i​
2​1​=22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
=−2​1​+22​​i
−2​1​=−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​+22​​i
=−22​​+22​​i
NoSolution
cos(x)=2​1​−2​1​i:No Solution
cos(x)=2​1​−2​1​i
Simplify 2​1​−2​1​i:22​​−i22​​
2​1​−2​1​i
Multiply 2​1​i:2​i​
2​1​i
Multiply fractions: a⋅cb​=ca⋅b​=2​1i​
Multiply: 1i=i=2​i​
=2​1​−2​i​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2​1−i​
Rationalize 2​1−i​:22​(1−i)​
2​1−i​
Multiply by the conjugate 2​2​​=2​2​(1−i)2​​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​(1−i)​
=22​(1−i)​
Rewrite 22​(1−i)​ in standard complex form: 22​​−22​​i
22​(1−i)​
Apply radical rule: 2​=221​=2221​(1−i)​
Apply exponent rule: xbxa​=xb−a1​21221​​=21−21​1​=21−21​1−i​
Subtract the numbers: 1−21​=21​=221​1−i​
Apply radical rule: 221​=2​=2​1−i​
Apply the fraction rule: ca±b​=ca​±cb​2​1−i​=2​1​−2​i​=2​1​−2​i​
−2​1​=−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=2​1​−22​​i
2​1​=22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
=22​​−22​​i
=22​​−22​​i
NoSolution
Combine all the solutionsx=2π​+2πn,x=23π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sin^3(x)-5sin^2(x)+2sin(x)=0(cos^2(a)-3cos(a)+2)/(sin^2(a))=1(sin(x)-(sqrt(2)))/2 =0cos(2x)=5-6cos^2(x)cos^4(x)=0.37

Frequently Asked Questions (FAQ)

  • What is the general solution for cos^6(x)=-cos^2(x) ?

    The general solution for cos^6(x)=-cos^2(x) is x= pi/2+2pin,x=(3pi)/2+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024