Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sqrt(1-cos(x))= 1/(2sin^2(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1−cos(x)​=2sin2(x)1​

Solution

x=1.01879…+2πn,x=2π−1.01879…+2πn,x=2.48401…+2πn,x=−2.48401…+2πn
+1
Degrees
x=58.37265…∘+360∘n,x=301.62734…∘+360∘n,x=142.32379…∘+360∘n,x=−142.32379…∘+360∘n
Solution steps
1−cos(x)​=2sin2(x)1​
Subtract 2sin2(x)1​ from both sides1−cos(x)​−2sin2(x)1​=0
Simplify 1−cos(x)​−2sin2(x)1​:2sin2(x)2sin2(x)1−cos(x)​−1​
1−cos(x)​−2sin2(x)1​
Convert element to fraction: −cos(x)+1​=2sin2(x)1−cos(x)​⋅2sin2(x)​=2sin2(x)1−cos(x)​⋅2sin2(x)​−2sin2(x)1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2sin2(x)1−cos(x)​⋅2sin2(x)−1​
2sin2(x)2sin2(x)1−cos(x)​−1​=0
g(x)f(x)​=0⇒f(x)=02sin2(x)1−cos(x)​−1=0
Rewrite using trig identities
−1+2sin2(x)1−cos(x)​
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−1+2(1−cos2(x))1−cos(x)​
−1+(1−cos2(x))⋅21−cos(x)​=0
Solve by substitution
−1+(1−cos2(x))⋅21−cos(x)​=0
Let: cos(x)=u−1+(1−u2)⋅21−u​=0
−1+(1−u2)⋅21−u​=0:u≈0.52439…,u≈−0.79147…
−1+(1−u2)⋅21−u​=0
Expand −1+(1−u2)⋅21−u​:−1+21−u​−21−u​u2
−1+(1−u2)⋅21−u​
=−1+21−u​(1−u2)
Expand 21−u​(1−u2):21−u​−21−u​u2
21−u​(1−u2)
Apply the distributive law: a(b−c)=ab−aca=21−u​,b=1,c=u2=21−u​⋅1−21−u​u2
=2⋅1⋅1−u​−21−u​u2
Multiply the numbers: 2⋅1=2=21−u​−21−u​u2
=−1+21−u​−21−u​u2
−1+21−u​−21−u​u2=0
Move 1to the right side
−1+21−u​−21−u​u2=0
Add 1 to both sides−1+21−u​−21−u​u2+1=0+1
Simplify21−u​−21−u​u2=1
21−u​−21−u​u2=1
Factor 21−u​−21−u​u2:21−u​(1−u2)
21−u​−21−u​u2
Rewrite as=1⋅21−u​−21−u​u2
Factor out common term 21−u​=21−u​(1−u2)
21−u​(1−u2)=1
Square both sides:4−4u−8u2+8u3+4u4−4u5=1
21−u​(1−u2)=1
(21−u​(1−u2))2=12
Expand (21−u​(1−u2))2:4−4u−8u2+8u3+4u4−4u5
(21−u​(1−u2))2
Apply exponent rule: (a⋅b)n=anbn=22(1−u​)2(−u2+1)2
(1−u​)2:1−u
Apply radical rule: a​=a21​=((1−u)21​)2
Apply exponent rule: (ab)c=abc=(1−u)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−u
=22(1−u)(1−u2)2
(1−u2)2=1−2u2+u4
(1−u2)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=1,b=u2
=12−2⋅1⋅u2+(u2)2
Simplify 12−2⋅1⋅u2+(u2)2:1−2u2+u4
12−2⋅1⋅u2+(u2)2
Apply rule 1a=112=1=1−2⋅1⋅u2+(u2)2
2⋅1⋅u2=2u2
2⋅1⋅u2
Multiply the numbers: 2⋅1=2=2u2
(u2)2=u4
(u2)2
Apply exponent rule: (ab)c=abc=u2⋅2
Multiply the numbers: 2⋅2=4=u4
=1−2u2+u4
=1−2u2+u4
=22(1−u)(u4−2u2+1)
22=4=4(1−u)(u4−2u2+1)
Distribute parentheses=4(1−u)⋅1+4(1−u)(−2u2)+4(1−u)u4
Apply minus-plus rules+(−a)=−a=4⋅1⋅(1−u)−4⋅2(1−u)u2+4(1−u)u4
Simplify 4⋅1⋅1−u−4⋅21−uu2+41−uu4:41−u−81−uu2+41−uu4
4⋅1⋅(1−u)−4⋅2(1−u)u2+4(1−u)u4
Multiply the numbers: 4⋅1=4=4(1−u)−4⋅2(1−u)u2+4(1−u)u4
Multiply the numbers: 4⋅2=8=4(1−u)−8(1−u)u2+4(1−u)u4
=4(1−u)−8(1−u)u2+4(1−u)u4
Expand 4(1−u)−8(1−u)u2+4(1−u)u4:4−4u−8u2+8u3+4u4−4u5
4(1−u)−8(1−u)u2+4(1−u)u4
=4(1−u)−8u2(1−u)+4u4(1−u)
Expand 4(1−u):4−4u
4(1−u)
Apply the distributive law: a(b−c)=ab−aca=4,b=1,c=u=4⋅1−4u
Multiply the numbers: 4⋅1=4=4−4u
=4−4u−8(1−u)u2+4(1−u)u4
Expand −8u2(1−u):−8u2+8u3
−8u2(1−u)
Apply the distributive law: a(b−c)=ab−aca=−8u2,b=1,c=u=−8u2⋅1−(−8u2)u
Apply minus-plus rules−(−a)=a=−8⋅1⋅u2+8u2u
Simplify −8⋅1⋅u2+8u2u:−8u2+8u3
−8⋅1⋅u2+8u2u
8⋅1⋅u2=8u2
8⋅1⋅u2
Multiply the numbers: 8⋅1=8=8u2
8u2u=8u3
8u2u
Apply exponent rule: ab⋅ac=ab+cu2u=u2+1=8u2+1
Add the numbers: 2+1=3=8u3
=−8u2+8u3
=−8u2+8u3
=4−4u−8u2+8u3+4(1−u)u4
Expand 4u4(1−u):4u4−4u5
4u4(1−u)
Apply the distributive law: a(b−c)=ab−aca=4u4,b=1,c=u=4u4⋅1−4u4u
=4⋅1⋅u4−4u4u
Simplify 4⋅1⋅u4−4u4u:4u4−4u5
4⋅1⋅u4−4u4u
4⋅1⋅u4=4u4
4⋅1⋅u4
Multiply the numbers: 4⋅1=4=4u4
4u4u=4u5
4u4u
Apply exponent rule: ab⋅ac=ab+cu4u=u4+1=4u4+1
Add the numbers: 4+1=5=4u5
=4u4−4u5
=4u4−4u5
=4−4u−8u2+8u3+4u4−4u5
=4−4u−8u2+8u3+4u4−4u5
Expand 12:1
12
Apply rule 1a=1=1
4−4u−8u2+8u3+4u4−4u5=1
4−4u−8u2+8u3+4u4−4u5=1
Solve 4−4u−8u2+8u3+4u4−4u5=1:u≈−1.15774…,u≈0.52439…,u≈−0.79147…
4−4u−8u2+8u3+4u4−4u5=1
Move 1to the left side
4−4u−8u2+8u3+4u4−4u5=1
Subtract 1 from both sides4−4u−8u2+8u3+4u4−4u5−1=1−1
Simplify−4u5+4u4+8u3−8u2−4u+3=0
−4u5+4u4+8u3−8u2−4u+3=0
Find one solution for −4u5+4u4+8u3−8u2−4u+3=0 using Newton-Raphson:u≈−1.15774…
−4u5+4u4+8u3−8u2−4u+3=0
Newton-Raphson Approximation Definition
f(u)=−4u5+4u4+8u3−8u2−4u+3
Find f′(u):−20u4+16u3+24u2−16u−4
dud​(−4u5+4u4+8u3−8u2−4u+3)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=−dud​(4u5)+dud​(4u4)+dud​(8u3)−dud​(8u2)−dud​(4u)+dud​(3)
dud​(4u5)=20u4
dud​(4u5)
Take the constant out: (a⋅f)′=a⋅f′=4dud​(u5)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=4⋅5u5−1
Simplify=20u4
dud​(4u4)=16u3
dud​(4u4)
Take the constant out: (a⋅f)′=a⋅f′=4dud​(u4)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=4⋅4u4−1
Simplify=16u3
dud​(8u3)=24u2
dud​(8u3)
Take the constant out: (a⋅f)′=a⋅f′=8dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=8⋅3u3−1
Simplify=24u2
dud​(8u2)=16u
dud​(8u2)
Take the constant out: (a⋅f)′=a⋅f′=8dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=8⋅2u2−1
Simplify=16u
dud​(4u)=4
dud​(4u)
Take the constant out: (a⋅f)′=a⋅f′=4dudu​
Apply the common derivative: dudu​=1=4⋅1
Simplify=4
dud​(3)=0
dud​(3)
Derivative of a constant: dxd​(a)=0=0
=−20u4+16u3+24u2−16u−4+0
Simplify=−20u4+16u3+24u2−16u−4
Let u0​=2Compute un+1​ until Δun+1​<0.000001
u1​=1.71969…:Δu1​=0.28030…
f(u0​)=−4⋅25+4⋅24+8⋅23−8⋅22−4⋅2+3=−37f′(u0​)=−20⋅24+16⋅23+24⋅22−16⋅2−4=−132u1​=1.71969…
Δu1​=∣1.71969…−2∣=0.28030…Δu1​=0.28030…
u2​=1.49728…:Δu2​=0.22241…
f(u1​)=−4⋅1.71969…5+4⋅1.71969…4+8⋅1.71969…3−8⋅1.71969…2−4⋅1.71969…+3=−12.02935…f′(u1​)=−20⋅1.71969…4+16⋅1.71969…3+24⋅1.71969…2−16⋅1.71969…−4=−54.08571…u2​=1.49728…
Δu2​=∣1.49728…−1.71969…∣=0.22241…Δu2​=0.22241…
u3​=1.30324…:Δu3​=0.19403…
f(u2​)=−4⋅1.49728…5+4⋅1.49728…4+8⋅1.49728…3−8⋅1.49728…2−4⋅1.49728…+3=−4.06767…f′(u2​)=−20⋅1.49728…4+16⋅1.49728…3+24⋅1.49728…2−16⋅1.49728…−4=−20.96340…u3​=1.30324…
Δu3​=∣1.30324…−1.49728…∣=0.19403…Δu3​=0.19403…
u4​=1.05328…:Δu4​=0.24996…
f(u3​)=−4⋅1.30324…5+4⋅1.30324…4+8⋅1.30324…3−8⋅1.30324…2−4⋅1.30324…+3=−1.59173…f′(u3​)=−20⋅1.30324…4+16⋅1.30324…3+24⋅1.30324…2−16⋅1.30324…−4=−6.36786…u4​=1.05328…
Δu4​=∣1.05328…−1.30324…∣=0.24996…Δu4​=0.24996…
u5​=−5.80799…:Δu5​=6.86128…
f(u4​)=−4⋅1.05328…5+4⋅1.05328…4+8⋅1.05328…3−8⋅1.05328…2−4⋅1.05328…+3=−1.00255…f′(u4​)=−20⋅1.05328…4+16⋅1.05328…3+24⋅1.05328…2−16⋅1.05328…−4=−0.14611…u5​=−5.80799…
Δu5​=∣−5.80799…−1.05328…∣=6.86128…Δu5​=6.86128…
u6​=−4.64067…:Δu6​=1.16732…
f(u5​)=−4(−5.80799…)5+4(−5.80799…)4+8(−5.80799…)3−8(−5.80799…)2−4(−5.80799…)+3=29176.40873…f′(u5​)=−20(−5.80799…)4+16(−5.80799…)3+24(−5.80799…)2−16(−5.80799…)−4=−24994.29514…u6​=−4.64067…
Δu6​=∣−4.64067…−(−5.80799…)∣=1.16732…Δu6​=1.16732…
u7​=−3.71587…:Δu7​=0.92480…
f(u6​)=−4(−4.64067…)5+4(−4.64067…)4+8(−4.64067…)3−8(−4.64067…)2−4(−4.64067…)+3=9514.18126…f′(u6​)=−20(−4.64067…)4+16(−4.64067…)3+24(−4.64067…)2−16(−4.64067…)−4=−10287.81312…u7​=−3.71587…
Δu7​=∣−3.71587…−(−4.64067…)∣=0.92480…Δu7​=0.92480…
u8​=−2.98754…:Δu8​=0.72832…
f(u7​)=−4(−3.71587…)5+4(−3.71587…)4+8(−3.71587…)3−8(−3.71587…)2−4(−3.71587…)+3=3093.32373…f′(u7​)=−20(−3.71587…)4+16(−3.71587…)3+24(−3.71587…)2−16(−3.71587…)−4=−4247.14664…u8​=−2.98754…
Δu8​=∣−2.98754…−(−3.71587…)∣=0.72832…Δu8​=0.72832…
u9​=−2.41948…:Δu9​=0.56806…
f(u8​)=−4(−2.98754…)5+4(−2.98754…)4+8(−2.98754…)3−8(−2.98754…)2−4(−2.98754…)+3=1000.86681…f′(u8​)=−20(−2.98754…)4+16(−2.98754…)3+24(−2.98754…)2−16(−2.98754…)−4=−1761.89279…u9​=−2.41948…
Δu9​=∣−2.41948…−(−2.98754…)∣=0.56806…Δu9​=0.56806…
u10​=−1.98344…:Δu10​=0.43603…
f(u9​)=−4(−2.41948…)5+4(−2.41948…)4+8(−2.41948…)3−8(−2.41948…)2−4(−2.41948…)+3=321.25479…f′(u9​)=−20(−2.41948…)4+16(−2.41948…)3+24(−2.41948…)2−16(−2.41948…)−4=−736.76863…u10​=−1.98344…
Δu10​=∣−1.98344…−(−2.41948…)∣=0.43603…Δu10​=0.43603…
u11​=−1.65761…:Δu11​=0.32583…
f(u10​)=−4(−1.98344…)5+4(−1.98344…)4+8(−1.98344…)3−8(−1.98344…)2−4(−1.98344…)+3=101.73511…f′(u10​)=−20(−1.98344…)4+16(−1.98344…)3+24(−1.98344…)2−16(−1.98344…)−4=−312.23335…u11​=−1.65761…
Δu11​=∣−1.65761…−(−1.98344…)∣=0.32583…Δu11​=0.32583…
u12​=−1.42520…:Δu12​=0.23241…
f(u11​)=−4(−1.65761…)5+4(−1.65761…)4+8(−1.65761…)3−8(−1.65761…)2−4(−1.65761…)+3=31.47022…f′(u11​)=−20(−1.65761…)4+16(−1.65761…)3+24(−1.65761…)2−16(−1.65761…)−4=−135.40437…u12​=−1.42520…
Δu12​=∣−1.42520…−(−1.65761…)∣=0.23241…Δu12​=0.23241…
u13​=−1.27318…:Δu13​=0.15201…
f(u12​)=−4(−1.42520…)5+4(−1.42520…)4+8(−1.42520…)3−8(−1.42520…)2−4(−1.42520…)+3=9.31556…f′(u12​)=−20(−1.42520…)4+16(−1.42520…)3+24(−1.42520…)2−16(−1.42520…)−4=−61.28130…u13​=−1.27318…
Δu13​=∣−1.27318…−(−1.42520…)∣=0.15201…Δu13​=0.15201…
u14​=−1.19046…:Δu14​=0.08272…
f(u13​)=−4(−1.27318…)5+4(−1.27318…)4+8(−1.27318…)3−8(−1.27318…)2−4(−1.27318…)+3=2.50663…f′(u13​)=−20(−1.27318…)4+16(−1.27318…)3+24(−1.27318…)2−16(−1.27318…)−4=−30.29974…u14​=−1.19046…
Δu14​=∣−1.19046…−(−1.27318…)∣=0.08272…Δu14​=0.08272…
u15​=−1.16145…:Δu15​=0.02900…
f(u14​)=−4(−1.19046…)5+4(−1.19046…)4+8(−1.19046…)3−8(−1.19046…)2−4(−1.19046…)+3=0.52502…f′(u14​)=−20(−1.19046…)4+16(−1.19046…)3+24(−1.19046…)2−16(−1.19046…)−4=−18.10266…u15​=−1.16145…
Δu15​=∣−1.16145…−(−1.19046…)∣=0.02900…Δu15​=0.02900…
u16​=−1.15780…:Δu16​=0.00365…
f(u15​)=−4(−1.16145…)5+4(−1.16145…)4+8(−1.16145…)3−8(−1.16145…)2−4(−1.16145…)+3=0.05297…f′(u15​)=−20(−1.16145…)4+16(−1.16145…)3+24(−1.16145…)2−16(−1.16145…)−4=−14.50486…u16​=−1.15780…
Δu16​=∣−1.15780…−(−1.16145…)∣=0.00365…Δu16​=0.00365…
u17​=−1.15774…:Δu17​=0.00005…
f(u16​)=−4(−1.15780…)5+4(−1.15780…)4+8(−1.15780…)3−8(−1.15780…)2−4(−1.15780…)+3=0.00078…f′(u16​)=−20(−1.15780…)4+16(−1.15780…)3+24(−1.15780…)2−16(−1.15780…)−4=−14.07518…u17​=−1.15774…
Δu17​=∣−1.15774…−(−1.15780…)∣=0.00005…Δu17​=0.00005…
u18​=−1.15774…:Δu18​=1.29677E−8
f(u17​)=−4(−1.15774…)5+4(−1.15774…)4+8(−1.15774…)3−8(−1.15774…)2−4(−1.15774…)+3=1.82438E−7f′(u17​)=−20(−1.15774…)4+16(−1.15774…)3+24(−1.15774…)2−16(−1.15774…)−4=−14.06865…u18​=−1.15774…
Δu18​=∣−1.15774…−(−1.15774…)∣=1.29677E−8Δu18​=1.29677E−8
u≈−1.15774…
Apply long division:u+1.15774…−4u5+4u4+8u3−8u2−4u+3​=−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…
−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…≈0
Find one solution for −4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…=0 using Newton-Raphson:u≈0.52439…
−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…=0
Newton-Raphson Approximation Definition
f(u)=−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…
Find f′(u):−16u3+25.89299…u2−3.98507…u−5.69314…
dud​(−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=−dud​(4u4)+dud​(8.63099…u3)−dud​(1.99253…u2)−dud​(5.69314…u)+dud​(2.59123…)
dud​(4u4)=16u3
dud​(4u4)
Take the constant out: (a⋅f)′=a⋅f′=4dud​(u4)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=4⋅4u4−1
Simplify=16u3
dud​(8.63099…u3)=25.89299…u2
dud​(8.63099…u3)
Take the constant out: (a⋅f)′=a⋅f′=8.63099…dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=8.63099…⋅3u3−1
Simplify=25.89299…u2
dud​(1.99253…u2)=3.98507…u
dud​(1.99253…u2)
Take the constant out: (a⋅f)′=a⋅f′=1.99253…dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=1.99253…⋅2u2−1
Simplify=3.98507…u
dud​(5.69314…u)=5.69314…
dud​(5.69314…u)
Take the constant out: (a⋅f)′=a⋅f′=5.69314…dudu​
Apply the common derivative: dudu​=1=5.69314…⋅1
Simplify=5.69314…
dud​(2.59123…)=0
dud​(2.59123…)
Derivative of a constant: dxd​(a)=0=0
=−16u3+25.89299…u2−3.98507…u−5.69314…+0
Simplify=−16u3+25.89299…u2−3.98507…u−5.69314…
Let u0​=0Compute un+1​ until Δun+1​<0.000001
u1​=0.45514…:Δu1​=0.45514…
f(u0​)=−4⋅04+8.63099…⋅03−1.99253…⋅02−5.69314…⋅0+2.59123…=2.59123…f′(u0​)=−16⋅03+25.89299…⋅02−3.98507…⋅0−5.69314…=−5.69314…u1​=0.45514…
Δu1​=∣0.45514…−0∣=0.45514…Δu1​=0.45514…
u2​=0.51796…:Δu2​=0.06281…
f(u1​)=−4⋅0.45514…4+8.63099…⋅0.45514…3−1.99253…⋅0.45514…2−5.69314…⋅0.45514…+2.59123…=0.22937…f′(u1​)=−16⋅0.45514…3+25.89299…⋅0.45514…2−3.98507…⋅0.45514…−5.69314…=−3.65154…u2​=0.51796…
Δu2​=∣0.51796…−0.45514…∣=0.06281…Δu2​=0.06281…
u3​=0.52432…:Δu3​=0.00635…
f(u2​)=−4⋅0.51796…4+8.63099…⋅0.51796…3−1.99253…⋅0.51796…2−5.69314…⋅0.51796…+2.59123…=0.01929…f′(u2​)=−16⋅0.51796…3+25.89299…⋅0.51796…2−3.98507…⋅0.51796…−5.69314…=−3.03391…u3​=0.52432…
Δu3​=∣0.52432…−0.51796…∣=0.00635…Δu3​=0.00635…
u4​=0.52439…:Δu4​=0.00006…
f(u3​)=−4⋅0.52432…4+8.63099…⋅0.52432…3−1.99253…⋅0.52432…2−5.69314…⋅0.52432…+2.59123…=0.00020…f′(u3​)=−16⋅0.52432…3+25.89299…⋅0.52432…2−3.98507…⋅0.52432…−5.69314…=−2.97053…u4​=0.52439…
Δu4​=∣0.52439…−0.52432…∣=0.00006…Δu4​=0.00006…
u5​=0.52439…:Δu5​=7.72366E−9
f(u4​)=−4⋅0.52439…4+8.63099…⋅0.52439…3−1.99253…⋅0.52439…2−5.69314…⋅0.52439…+2.59123…=2.29382E−8f′(u4​)=−16⋅0.52439…3+25.89299…⋅0.52439…2−3.98507…⋅0.52439…−5.69314…=−2.96985…u5​=0.52439…
Δu5​=∣0.52439…−0.52439…∣=7.72366E−9Δu5​=7.72366E−9
u≈0.52439…
Apply long division:u−0.52439…−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…​=−4u3+6.53342…u2+1.43354…u−4.94140…
−4u3+6.53342…u2+1.43354…u−4.94140…≈0
Find one solution for −4u3+6.53342…u2+1.43354…u−4.94140…=0 using Newton-Raphson:u≈−0.79147…
−4u3+6.53342…u2+1.43354…u−4.94140…=0
Newton-Raphson Approximation Definition
f(u)=−4u3+6.53342…u2+1.43354…u−4.94140…
Find f′(u):−12u2+13.06685…u+1.43354…
dud​(−4u3+6.53342…u2+1.43354…u−4.94140…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=−dud​(4u3)+dud​(6.53342…u2)+dud​(1.43354…u)−dud​(4.94140…)
dud​(4u3)=12u2
dud​(4u3)
Take the constant out: (a⋅f)′=a⋅f′=4dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=4⋅3u3−1
Simplify=12u2
dud​(6.53342…u2)=13.06685…u
dud​(6.53342…u2)
Take the constant out: (a⋅f)′=a⋅f′=6.53342…dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=6.53342…⋅2u2−1
Simplify=13.06685…u
dud​(1.43354…u)=1.43354…
dud​(1.43354…u)
Take the constant out: (a⋅f)′=a⋅f′=1.43354…dudu​
Apply the common derivative: dudu​=1=1.43354…⋅1
Simplify=1.43354…
dud​(4.94140…)=0
dud​(4.94140…)
Derivative of a constant: dxd​(a)=0=0
=−12u2+13.06685…u+1.43354…−0
Simplify=−12u2+13.06685…u+1.43354…
Let u0​=3Compute un+1​ until Δun+1​<0.000001
u1​=2.26016…:Δu1​=0.73983…
f(u0​)=−4⋅33+6.53342…⋅32+1.43354…⋅3−4.94140…=−49.83990…f′(u0​)=−12⋅32+13.06685…⋅3+1.43354…=−67.36588…u1​=2.26016…
Δu1​=∣2.26016…−3∣=0.73983…Δu1​=0.73983…
u2​=1.78183…:Δu2​=0.47832…
f(u1​)=−4⋅2.26016…3+6.53342…⋅2.26016…2+1.43354…⋅2.26016…−4.94140…=−14.50903…f′(u1​)=−12⋅2.26016…2+13.06685…⋅2.26016…+1.43354…=−30.33318…u2​=1.78183…
Δu2​=∣1.78183…−2.26016…∣=0.47832…Δu2​=0.47832…
u3​=1.46256…:Δu3​=0.31927…
f(u2​)=−4⋅1.78183…3+6.53342…⋅1.78183…2+1.43354…⋅1.78183…−4.94140…=−4.27274…f′(u2​)=−12⋅1.78183…2+13.06685…⋅1.78183…+1.43354…=−13.38281…u3​=1.46256…
Δu3​=∣1.46256…−1.78183…∣=0.31927…Δu3​=0.31927…
u4​=1.19261…:Δu4​=0.26995…
f(u3​)=−4⋅1.46256…3+6.53342…⋅1.46256…2+1.43354…⋅1.46256…−4.94140…=−1.38340…f′(u3​)=−12⋅1.46256…2+13.06685…⋅1.46256…+1.43354…=−5.12454…u4​=1.19261…
Δu4​=∣1.19261…−1.46256…∣=0.26995…Δu4​=0.26995…
u5​=−13.10640…:Δu5​=14.29901…
f(u4​)=−4⋅1.19261…3+6.53342…⋅1.19261…2+1.43354…⋅1.19261…−4.94140…=−0.72421…f′(u4​)=−12⋅1.19261…2+13.06685…⋅1.19261…+1.43354…=−0.05064…u5​=−13.10640…
Δu5​=∣−13.10640…−1.19261…∣=14.29901…Δu5​=14.29901…
u6​=−8.57776…:Δu6​=4.52864…
f(u5​)=−4(−13.10640…)3+6.53342…(−13.10640…)2+1.43354…(−13.10640…)−4.94140…=10104.13392…f′(u5​)=−12(−13.10640…)2+13.06685…(−13.10640…)+1.43354…=−2231.16096…u6​=−8.57776…
Δu6​=∣−8.57776…−(−13.10640…)∣=4.52864…Δu6​=4.52864…
u7​=−5.57045…:Δu7​=3.00730…
f(u6​)=−4(−8.57776…)3+6.53342…(−8.57776…)2+1.43354…(−8.57776…)−4.94140…=2988.01817…f′(u6​)=−12(−8.57776…)2+13.06685…(−8.57776…)+1.43354…=−993.58713…u7​=−5.57045…
Δu7​=∣−5.57045…−(−8.57776…)∣=3.00730…Δu7​=3.00730…
u8​=−3.58447…:Δu8​=1.98598…
f(u7​)=−4(−5.57045…)3+6.53342…(−5.57045…)2+1.43354…(−5.57045…)−4.94140…=881.21142…f′(u7​)=−12(−5.57045…)2+13.06685…(−5.57045…)+1.43354…=−443.71510…u8​=−3.58447…
Δu8​=∣−3.58447…−(−5.57045…)∣=1.98598…Δu8​=1.98598…
u9​=−2.29137…:Δu9​=1.29310…
f(u8​)=−4(−3.58447…)3+6.53342…(−3.58447…)2+1.43354…(−3.58447…)−4.94140…=258.08452…f′(u8​)=−12(−3.58447…)2+13.06685…(−3.58447…)+1.43354…=−199.58579…u9​=−2.29137…
Δu9​=∣−2.29137…−(−3.58447…)∣=1.29310…Δu9​=1.29310…
u10​=−1.48056…:Δu10​=0.81081…
f(u9​)=−4(−2.29137…)3+6.53342…(−2.29137…)2+1.43354…(−2.29137…)−4.94140…=74.19938…f′(u9​)=−12(−2.29137…)2+13.06685…(−2.29137…)+1.43354…=−91.51226…u10​=−1.48056…
Δu10​=∣−1.48056…−(−2.29137…)∣=0.81081…Δu10​=0.81081…
u11​=−1.02282…:Δu11​=0.45773…
f(u10​)=−4(−1.48056…)3+6.53342…(−1.48056…)2+1.43354…(−1.48056…)−4.94140…=20.23972…f′(u10​)=−12(−1.48056…)2+13.06685…(−1.48056…)+1.43354…=−44.21745…u11​=−1.02282…
Δu11​=∣−1.02282…−(−1.48056…)∣=0.45773…Δu11​=0.45773…
u12​=−0.83056…:Δu12​=0.19226…
f(u11​)=−4(−1.02282…)3+6.53342…(−1.02282…)2+1.43354…(−1.02282…)−4.94140…=4.70771…f′(u11​)=−12(−1.02282…)2+13.06685…(−1.02282…)+1.43354…=−24.48576…u12​=−0.83056…
Δu12​=∣−0.83056…−(−1.02282…)∣=0.19226…Δu12​=0.19226…
u13​=−0.79288…:Δu13​=0.03767…
f(u12​)=−4(−0.83056…)3+6.53342…(−0.83056…)2+1.43354…(−0.83056…)−4.94140…=0.66678…f′(u12​)=−12(−0.83056…)2+13.06685…(−0.83056…)+1.43354…=−17.69741…u13​=−0.79288…
Δu13​=∣−0.79288…−(−0.83056…)∣=0.03767…Δu13​=0.03767…
u14​=−0.79147…:Δu14​=0.00140…
f(u13​)=−4(−0.79288…)3+6.53342…(−0.79288…)2+1.43354…(−0.79288…)−4.94140…=0.0232093455f′(u13​)=−12(−0.79288…)2+13.06685…(−0.79288…)+1.43354…=−16.47108…u14​=−0.79147…
Δu14​=∣−0.79147…−(−0.79288…)∣=0.00140…Δu14​=0.00140…
u15​=−0.79147…:Δu15​=1.9392E−6
f(u14​)=−4(−0.79147…)3+6.53342…(−0.79147…)2+1.43354…(−0.79147…)−4.94140…=0.00003…f′(u14​)=−12(−0.79147…)2+13.06685…(−0.79147…)+1.43354…=−16.42588…u15​=−0.79147…
Δu15​=∣−0.79147…−(−0.79147…)∣=1.9392E−6Δu15​=1.9392E−6
u16​=−0.79147…:Δu16​=3.6702E−12
f(u15​)=−4(−0.79147…)3+6.53342…(−0.79147…)2+1.43354…(−0.79147…)−4.94140…=6.0286E−11f′(u15​)=−12(−0.79147…)2+13.06685…(−0.79147…)+1.43354…=−16.42581…u16​=−0.79147…
Δu16​=∣−0.79147…−(−0.79147…)∣=3.6702E−12Δu16​=3.6702E−12
u≈−0.79147…
Apply long division:u+0.79147…−4u3+6.53342…u2+1.43354…u−4.94140…​=−4u2+9.69933…u−6.24326…
−4u2+9.69933…u−6.24326…≈0
Find one solution for −4u2+9.69933…u−6.24326…=0 using Newton-Raphson:No Solution for u∈R
−4u2+9.69933…u−6.24326…=0
Newton-Raphson Approximation Definition
f(u)=−4u2+9.69933…u−6.24326…
Find f′(u):−8u+9.69933…
dud​(−4u2+9.69933…u−6.24326…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=−dud​(4u2)+dud​(9.69933…u)−dud​(6.24326…)
dud​(4u2)=8u
dud​(4u2)
Take the constant out: (a⋅f)′=a⋅f′=4dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=4⋅2u2−1
Simplify=8u
dud​(9.69933…u)=9.69933…
dud​(9.69933…u)
Take the constant out: (a⋅f)′=a⋅f′=9.69933…dudu​
Apply the common derivative: dudu​=1=9.69933…⋅1
Simplify=9.69933…
dud​(6.24326…)=0
dud​(6.24326…)
Derivative of a constant: dxd​(a)=0=0
=−8u+9.69933…−0
Simplify=−8u+9.69933…
Let u0​=1Compute un+1​ until Δun+1​<0.000001
u1​=1.32008…:Δu1​=0.32008…
f(u0​)=−4⋅12+9.69933…⋅1−6.24326…=−0.54392…f′(u0​)=−8⋅1+9.69933…=1.69933…u1​=1.32008…
Δu1​=∣1.32008…−1∣=0.32008…Δu1​=0.32008…
u2​=0.84428…:Δu2​=0.47579…
f(u1​)=−4⋅1.32008…2+9.69933…⋅1.32008…−6.24326…=−0.40980…f′(u1​)=−8⋅1.32008…+9.69933…=−0.86130…u2​=0.84428…
Δu2​=∣0.84428…−1.32008…∣=0.47579…Δu2​=0.47579…
u3​=1.15175…:Δu3​=0.30747…
f(u2​)=−4⋅0.84428…2+9.69933…⋅0.84428…−6.24326…=−0.90553…f′(u2​)=−8⋅0.84428…+9.69933…=2.94507…u3​=1.15175…
Δu3​=∣1.15175…−0.84428…∣=0.30747…Δu3​=0.30747…
u4​=1.93099…:Δu4​=0.77924…
f(u3​)=−4⋅1.15175…2+9.69933…⋅1.15175…−6.24326…=−0.37815…f′(u3​)=−8⋅1.15175…+9.69933…=0.48529…u4​=1.93099…
Δu4​=∣1.93099…−1.15175…∣=0.77924…Δu4​=0.77924…
u5​=1.50848…:Δu5​=0.42251…
f(u4​)=−4⋅1.93099…2+9.69933…⋅1.93099…−6.24326…=−2.42887…f′(u4​)=−8⋅1.93099…+9.69933…=−5.74865…u5​=1.50848…
Δu5​=∣1.50848…−1.93099…∣=0.42251…Δu5​=0.42251…
u6​=1.20700…:Δu6​=0.30147…
f(u5​)=−4⋅1.50848…2+9.69933…⋅1.50848…−6.24326…=−0.71406…f′(u5​)=−8⋅1.50848…+9.69933…=−2.36855…u6​=1.20700…
Δu6​=∣1.20700…−1.50848…∣=0.30147…Δu6​=0.30147…
u7​=9.60809…:Δu7​=8.40108…
f(u6​)=−4⋅1.20700…2+9.69933…⋅1.20700…−6.24326…=−0.36355…f′(u6​)=−8⋅1.20700…+9.69933…=0.04327…u7​=9.60809…
Δu7​=∣9.60809…−1.20700…∣=8.40108…Δu7​=8.40108…
u8​=5.40484…:Δu8​=4.20324…
f(u7​)=−4⋅9.60809…2+9.69933…⋅9.60809…−6.24326…=−282.31282…f′(u7​)=−8⋅9.60809…+9.69933…=−67.16539…u8​=5.40484…
Δu8​=∣5.40484…−9.60809…∣=4.20324…Δu8​=4.20324…
u9​=3.29779…:Δu9​=2.10704…
f(u8​)=−4⋅5.40484…2+9.69933…⋅5.40484…−6.24326…=−70.66918…f′(u8​)=−8⋅5.40484…+9.69933…=−33.53940…u9​=3.29779…
Δu9​=∣3.29779…−5.40484…∣=2.10704…Δu9​=2.10704…
u10​=2.23332…:Δu10​=1.06447…
f(u9​)=−4⋅3.29779…2+9.69933…⋅3.29779…−6.24326…=−17.75862…f′(u9​)=−8⋅3.29779…+9.69933…=−16.68301…u10​=2.23332…
Δu10​=∣2.23332…−3.29779…∣=1.06447…Δu10​=1.06447…
u11​=1.67836…:Δu11​=0.55495…
f(u10​)=−4⋅2.23332…2+9.69933…⋅2.23332…−6.24326…=−4.53241…f′(u10​)=−8⋅2.23332…+9.69933…=−8.16722…u11​=1.67836…
Δu11​=∣1.67836…−2.23332…∣=0.55495…Δu11​=0.55495…
u12​=1.34789…:Δu12​=0.33047…
f(u11​)=−4⋅1.67836…2+9.69933…⋅1.67836…−6.24326…=−1.23188…f′(u11​)=−8⋅1.67836…+9.69933…=−3.72761…u12​=1.34789…
Δu12​=∣1.34789…−1.67836…∣=0.33047…Δu12​=0.33047…
u13​=0.94482…:Δu13​=0.40307…
f(u12​)=−4⋅1.34789…2+9.69933…⋅1.34789…−6.24326…=−0.43685…f′(u12​)=−8⋅1.34789…+9.69933…=−1.08381…u13​=0.94482…
Δu13​=∣0.94482…−1.34789…∣=0.40307…Δu13​=0.40307…
Cannot find solution
The solutions areu≈−1.15774…,u≈0.52439…,u≈−0.79147…
u≈−1.15774…,u≈0.52439…,u≈−0.79147…
Verify Solutions:u≈−1.15774…False,u≈0.52439…True,u≈−0.79147…True
Check the solutions by plugging them into −1+(1−u2)⋅21−u​=0
Remove the ones that don't agree with the equation.
Plug in u≈−1.15774…:False
−1+(1−(−1.15774…)2)⋅21−(−1.15774…)​=0
−1+(1−(−1.15774…)2)⋅21−(−1.15774…)​=−2
−1+(1−(−1.15774…)2)⋅21−(−1.15774…)​
Apply rule −(−a)=a=−1+(1−(−1.15774…)2)⋅21+1.15774…​
(1−(−1.15774…)2)⋅21+1.15774…​=−0.68076…2.15774…​
(1−(−1.15774…)2)⋅21+1.15774…​
(−1.15774…)2=1.34038…
(−1.15774…)2
Apply exponent rule: (−a)n=an,if n is even(−1.15774…)2=1.15774…2=1.15774…2
1.15774…2=1.34038…=1.34038…
=2(1−1.34038…)1+1.15774…​
Add the numbers: 1+1.15774…=2.15774…=22.15774…​(1−1.34038…)
Subtract the numbers: 1−1.34038…=−0.34038…=2(−0.34038…)2.15774…​
Remove parentheses: (−a)=−a=−0.34038…⋅22.15774…​
Multiply the numbers: 0.34038…⋅2=0.68076…=−0.68076…2.15774…​
=−1−0.68076…2.15774…​
0.68076…2.15774…​=1
0.68076…2.15774…​
2.15774…​=1.46892…=0.68076…⋅1.46892…
Multiply the numbers: 0.68076…⋅1.46892…=1=1
=−1−1
Subtract the numbers: −1−1=−2=−2
−2=0
False
Plug in u≈0.52439…:True
−1+(1−0.52439…2)⋅21−0.52439…​=0
−1+(1−0.52439…2)⋅21−0.52439…​=5.0E−15
−1+(1−0.52439…2)⋅21−0.52439…​
(1−0.52439…2)⋅21−0.52439…​=1.45002…0.47560…​
(1−0.52439…2)⋅21−0.52439…​
0.52439…2=0.27498…=2(1−0.27498…)1−0.52439…​
Subtract the numbers: 1−0.52439…=0.47560…=20.47560…​(1−0.27498…)
Subtract the numbers: 1−0.27498…=0.72501…=2⋅0.72501…0.47560…​
Multiply the numbers: 0.72501…⋅2=1.45002…=1.45002…0.47560…​
=−1+1.45002…0.47560…​
1.45002…0.47560…​=1
1.45002…0.47560…​
0.47560…​=0.68964…=0.68964…⋅1.45002…
Multiply the numbers: 1.45002…⋅0.68964…=1=1
=−1+1
Add/Subtract the numbers: −1+1=5.0E−15=5.0E−15
5.0E−15=0
True
Plug in u≈−0.79147…:True
−1+(1−(−0.79147…)2)⋅21−(−0.79147…)​=0
−1+(1−(−0.79147…)2)⋅21−(−0.79147…)​=5.0E−15
−1+(1−(−0.79147…)2)⋅21−(−0.79147…)​
Apply rule −(−a)=a=−1+(1−(−0.79147…)2)⋅21+0.79147…​
(1−(−0.79147…)2)⋅21+0.79147…​=0.74712…1.79147…​
(1−(−0.79147…)2)⋅21+0.79147…​
(−0.79147…)2=0.62643…
(−0.79147…)2
Apply exponent rule: (−a)n=an,if n is even(−0.79147…)2=0.79147…2=0.79147…2
0.79147…2=0.62643…=0.62643…
=2(1−0.62643…)1+0.79147…​
Add the numbers: 1+0.79147…=1.79147…=21.79147…​(1−0.62643…)
Subtract the numbers: 1−0.62643…=0.37356…=2⋅0.37356…1.79147…​
Multiply the numbers: 0.37356…⋅2=0.74712…=0.74712…1.79147…​
=−1+0.74712…1.79147…​
0.74712…1.79147…​=1
0.74712…1.79147…​
1.79147…​=1.33846…=0.74712…⋅1.33846…
Multiply the numbers: 0.74712…⋅1.33846…=1=1
=−1+1
Add/Subtract the numbers: −1+1=5.0E−15=5.0E−15
5.0E−15=0
True
The solutions areu≈0.52439…,u≈−0.79147…
Substitute back u=cos(x)cos(x)≈0.52439…,cos(x)≈−0.79147…
cos(x)≈0.52439…,cos(x)≈−0.79147…
cos(x)=0.52439…:x=arccos(0.52439…)+2πn,x=2π−arccos(0.52439…)+2πn
cos(x)=0.52439…
Apply trig inverse properties
cos(x)=0.52439…
General solutions for cos(x)=0.52439…cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(0.52439…)+2πn,x=2π−arccos(0.52439…)+2πn
x=arccos(0.52439…)+2πn,x=2π−arccos(0.52439…)+2πn
cos(x)=−0.79147…:x=arccos(−0.79147…)+2πn,x=−arccos(−0.79147…)+2πn
cos(x)=−0.79147…
Apply trig inverse properties
cos(x)=−0.79147…
General solutions for cos(x)=−0.79147…cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−0.79147…)+2πn,x=−arccos(−0.79147…)+2πn
x=arccos(−0.79147…)+2πn,x=−arccos(−0.79147…)+2πn
Combine all the solutionsx=arccos(0.52439…)+2πn,x=2π−arccos(0.52439…)+2πn,x=arccos(−0.79147…)+2πn,x=−arccos(−0.79147…)+2πn
Show solutions in decimal formx=1.01879…+2πn,x=2π−1.01879…+2πn,x=2.48401…+2πn,x=−2.48401…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(2x-1)= 1/2tan(a)= 5/3sin(x)=0.43333333cos^6(x)+3cos^3(x)-4=0-sin^2(x)=-1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024