Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^4(x)+sin^2(x)=sin^6(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin4(x)+sin2(x)=sin6(x)

Solution

x=2πn,x=π+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n
Solution steps
sin4(x)+sin2(x)=sin6(x)
Solve by substitution
sin4(x)+sin2(x)=sin6(x)
Let: sin(x)=uu4+u2=u6
u4+u2=u6:u=0,u=21+5​​​,u=−21+5​​​,u=21−5​​​,u=−21−5​​​
u4+u2=u6
Switch sidesu6=u4+u2
Move u2to the left side
u6=u4+u2
Subtract u2 from both sidesu6−u2=u4+u2−u2
Simplifyu6−u2=u4
u6−u2=u4
Move u4to the left side
u6−u2=u4
Subtract u4 from both sidesu6−u2−u4=u4−u4
Simplifyu6−u2−u4=0
u6−u2−u4=0
Write in the standard form an​xn+…+a1​x+a0​=0u6−u4−u2=0
Rewrite the equation with v=u2,v2=u4 and v3=u6v3−v2−v=0
Solve v3−v2−v=0:v=0,v=21+5​​,v=21−5​​
v3−v2−v=0
Factor v3−v2−v:v(v2−v−1)
v3−v2−v
Apply exponent rule: ab+c=abacv2=vv=v2v−vv−v
Factor out common term v=v(v2−v−1)
v(v2−v−1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0v=0orv2−v−1=0
Solve v2−v−1=0:v=21+5​​,v=21−5​​
v2−v−1=0
Solve with the quadratic formula
v2−v−1=0
Quadratic Equation Formula:
For a=1,b=−1,c=−1v1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅(−1)​​
v1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅(−1)​​
(−1)2−4⋅1⋅(−1)​=5​
(−1)2−4⋅1⋅(−1)​
Apply rule −(−a)=a=(−1)2+4⋅1⋅1​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅1⋅1=4
4⋅1⋅1
Multiply the numbers: 4⋅1⋅1=4=4
=1+4​
Add the numbers: 1+4=5=5​
v1,2​=2⋅1−(−1)±5​​
Separate the solutionsv1​=2⋅1−(−1)+5​​,v2​=2⋅1−(−1)−5​​
v=2⋅1−(−1)+5​​:21+5​​
2⋅1−(−1)+5​​
Apply rule −(−a)=a=2⋅11+5​​
Multiply the numbers: 2⋅1=2=21+5​​
v=2⋅1−(−1)−5​​:21−5​​
2⋅1−(−1)−5​​
Apply rule −(−a)=a=2⋅11−5​​
Multiply the numbers: 2⋅1=2=21−5​​
The solutions to the quadratic equation are:v=21+5​​,v=21−5​​
The solutions arev=0,v=21+5​​,v=21−5​​
v=0,v=21+5​​,v=21−5​​
Substitute back v=u2,solve for u
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
Solve u2=21+5​​:u=21+5​​​,u=−21+5​​​
u2=21+5​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=21+5​​​,u=−21+5​​​
Solve u2=21−5​​:u=21−5​​​,u=−21−5​​​
u2=21−5​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=21−5​​​,u=−21−5​​​
The solutions are
u=0,u=21+5​​​,u=−21+5​​​,u=21−5​​​,u=−21−5​​​
Substitute back u=sin(x)sin(x)=0,sin(x)=21+5​​​,sin(x)=−21+5​​​,sin(x)=21−5​​​,sin(x)=−21−5​​​
sin(x)=0,sin(x)=21+5​​​,sin(x)=−21+5​​​,sin(x)=21−5​​​,sin(x)=−21−5​​​
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
sin(x)=21+5​​​:No Solution
sin(x)=21+5​​​
−1≤sin(x)≤1NoSolution
sin(x)=−21+5​​​:No Solution
sin(x)=−21+5​​​
−1≤sin(x)≤1NoSolution
sin(x)=21−5​​​:x=arcsin​21−5​​​​+2πn,x=π+arcsin​−21−5​​​​+2πn
sin(x)=21−5​​​
Apply trig inverse properties
sin(x)=21−5​​​
General solutions for sin(x)=21−5​​​sin(x)=a⇒x=arcsin(a)+2πn,x=π+arcsin(a)+2πnx=arcsin​21−5​​​​+2πn,x=π+arcsin​−21−5​​​​+2πn
x=arcsin​21−5​​​​+2πn,x=π+arcsin​−21−5​​​​+2πn
sin(x)=−21−5​​​:x=arcsin​−21−5​​​​+2πn,x=π+arcsin​21−5​​​​+2πn
sin(x)=−21−5​​​
Apply trig inverse properties
sin(x)=−21−5​​​
General solutions for sin(x)=−21−5​​​sin(x)=a⇒x=arcsin(a)+2πn,x=π+arcsin(a)+2πnx=arcsin​−21−5​​​​+2πn,x=π+arcsin​21−5​​​​+2πn
x=arcsin​−21−5​​​​+2πn,x=π+arcsin​21−5​​​​+2πn
Combine all the solutionsx=2πn,x=π+2πn,x=arcsin​21−5​​​​+2πn,x=π+arcsin​−21−5​​​​+2πn,x=arcsin​−21−5​​​​+2πn,x=π+arcsin​21−5​​​​+2πn
Since the equation is undefined for:arcsin​21−5​​​​+2πn,π+arcsin​−21−5​​​​+2πn,arcsin​−21−5​​​​+2πn,π+arcsin​21−5​​​​+2πnx=2πn,x=π+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(a)=(-11)/(14)solvefor x,sin(x/x)=0.75cos^2(x)+sin^2(x)=4cos(u)-1.5sin^2(u)+0.1667=03sin(2x-1)=1

Frequently Asked Questions (FAQ)

  • What is the general solution for sin^4(x)+sin^2(x)=sin^6(x) ?

    The general solution for sin^4(x)+sin^2(x)=sin^6(x) is x=2pin,x=pi+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024