Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(u)-1.5sin^2(u)+0.1667=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(u)−1.5sin2(u)+0.1667=0

Solution

u=0.84108…+2πn,u=2π−0.84108…+2πn
+1
Degrees
u=48.19053…∘+360∘n,u=311.80946…∘+360∘n
Solution steps
cos(u)−1.5sin2(u)+0.1667=0
Rewrite using trig identities
0.1667+cos(u)−1.5sin2(u)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=0.1667+cos(u)−1.5(1−cos2(u))
Simplify 0.1667+cos(u)−1.5(1−cos2(u)):1.5cos2(u)+cos(u)−1.3333
0.1667+cos(u)−1.5(1−cos2(u))
Expand −1.5(1−cos2(u)):−1.5+1.5cos2(u)
−1.5(1−cos2(u))
Apply the distributive law: a(b−c)=ab−aca=−1.5,b=1,c=cos2(u)=−1.5⋅1−(−1.5)cos2(u)
Apply minus-plus rules−(−a)=a=−1⋅1.5+1.5cos2(u)
Multiply the numbers: 1⋅1.5=1.5=−1.5+1.5cos2(u)
=0.1667+cos(u)−1.5+1.5cos2(u)
Simplify 0.1667+cos(u)−1.5+1.5cos2(u):1.5cos2(u)+cos(u)−1.3333
0.1667+cos(u)−1.5+1.5cos2(u)
Group like terms=cos(u)+1.5cos2(u)+0.1667−1.5
Add/Subtract the numbers: 0.1667−1.5=−1.3333=1.5cos2(u)+cos(u)−1.3333
=1.5cos2(u)+cos(u)−1.3333
=1.5cos2(u)+cos(u)−1.3333
−1.3333+cos(u)+1.5cos2(u)=0
Solve by substitution
−1.3333+cos(u)+1.5cos2(u)=0
Let: cos(u)=v−1.3333+v+1.5v2=0
−1.3333+v+1.5v2=0:v=3−1+8.9998​​,v=3−1−8.9998​​
−1.3333+v+1.5v2=0
Write in the standard form ax2+bx+c=01.5v2+v−1.3333=0
Solve with the quadratic formula
1.5v2+v−1.3333=0
Quadratic Equation Formula:
For a=1.5,b=1,c=−1.3333v1,2​=2⋅1.5−1±12−4⋅1.5(−1.3333)​​
v1,2​=2⋅1.5−1±12−4⋅1.5(−1.3333)​​
12−4⋅1.5(−1.3333)​=8.9998​
12−4⋅1.5(−1.3333)​
Apply rule 1a=112=1=1−4(−1.3333)⋅1.5​
Apply rule −(−a)=a=1+4⋅1.5⋅1.3333​
Multiply the numbers: 4⋅1.5⋅1.3333=7.9998=1+7.9998​
Add the numbers: 1+7.9998=8.9998=8.9998​
v1,2​=2⋅1.5−1±8.9998​​
Separate the solutionsv1​=2⋅1.5−1+8.9998​​,v2​=2⋅1.5−1−8.9998​​
v=2⋅1.5−1+8.9998​​:3−1+8.9998​​
2⋅1.5−1+8.9998​​
Multiply the numbers: 2⋅1.5=3=3−1+8.9998​​
v=2⋅1.5−1−8.9998​​:3−1−8.9998​​
2⋅1.5−1−8.9998​​
Multiply the numbers: 2⋅1.5=3=3−1−8.9998​​
The solutions to the quadratic equation are:v=3−1+8.9998​​,v=3−1−8.9998​​
Substitute back v=cos(u)cos(u)=3−1+8.9998​​,cos(u)=3−1−8.9998​​
cos(u)=3−1+8.9998​​,cos(u)=3−1−8.9998​​
cos(u)=3−1+8.9998​​:u=arccos(3−1+8.9998​​)+2πn,u=2π−arccos(3−1+8.9998​​)+2πn
cos(u)=3−1+8.9998​​
Apply trig inverse properties
cos(u)=3−1+8.9998​​
General solutions for cos(u)=3−1+8.9998​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnu=arccos(3−1+8.9998​​)+2πn,u=2π−arccos(3−1+8.9998​​)+2πn
u=arccos(3−1+8.9998​​)+2πn,u=2π−arccos(3−1+8.9998​​)+2πn
cos(u)=3−1−8.9998​​:No Solution
cos(u)=3−1−8.9998​​
−1≤cos(x)≤1NoSolution
Combine all the solutionsu=arccos(3−1+8.9998​​)+2πn,u=2π−arccos(3−1+8.9998​​)+2πn
Show solutions in decimal formu=0.84108…+2πn,u=2π−0.84108…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3sin(2x-1)=1solvefor m,sec(m+12)=csc(42-n)1tan(x)=sqrt(3)tan(x)=(1.6)/4sin^2(x)+7sin^2(x)+5cos^2(x)+3=0

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(u)-1.5sin^2(u)+0.1667=0 ?

    The general solution for cos(u)-1.5sin^2(u)+0.1667=0 is u=0.84108…+2pin,u=2pi-0.84108…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024