Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan^3(3x)-2sin^3(3x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan3(3x)−2sin3(3x)=0

Solution

x=32πn​,x=3π​+32πn​,x=30.65392…​+32πn​,x=32π​−30.65392…​+32πn​
+1
Degrees
x=0∘+120∘n,x=60∘+120∘n,x=12.48910…∘+120∘n,x=107.51089…∘+120∘n
Solution steps
tan3(3x)−2sin3(3x)=0
Factor
tan3(3x)−2sin3(3x)
Rewrite tan3(3x)−2sin3(3x) as
tan3(3x)−2sin3(3x)
Apply radical rule: a=(a​)2
Apply exponent rule: ambm=(ab)m
Apply Difference of Cubes Formula: x3−y3=(x−y)(x2+xy+y2)
Refine
Solving each part separately
Express with sin, cos
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​
Simplify
Convert element to fraction:
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​
g(x)f(x)​=0⇒f(x)=0
Factor
Factor out common term −sin(3x)
Solving each part separately
sin(3x)=0:x=32πn​,x=3π​+32πn​
sin(3x)=0
General solutions for sin(3x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
3x=0+2πn,3x=π+2πn
3x=0+2πn,3x=π+2πn
Solve 3x=0+2πn:x=32πn​
3x=0+2πn
0+2πn=2πn3x=2πn
Divide both sides by 3
3x=2πn
Divide both sides by 333x​=32πn​
Simplifyx=32πn​
x=32πn​
Solve 3x=π+2πn:x=3π​+32πn​
3x=π+2πn
Divide both sides by 3
3x=π+2πn
Divide both sides by 333x​=3π​+32πn​
Simplifyx=3π​+32πn​
x=3π​+32πn​
x=32πn​,x=3π​+32πn​
Move 1to the right side
Add 1 to both sides
Simplify
Divide both sides by
Divide both sides by
Simplify
Simplify
Cancel the common factor: =cos(3x)
Simplify
Multiply by the conjugate 232​232​​
1⋅232​=232​
Apply exponent rule: ab⋅ac=ab+c=232​+31​
Join 32​+31​:1
32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=21
Apply rule a1=a=2
=2232​​
cos(3x)=2232​​
cos(3x)=2232​​
cos(3x)=2232​​
Apply trig inverse properties
cos(3x)=2232​​
General solutions for cos(3x)=2232​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πn3x=arccos(2232​​)+2πn,3x=2π−arccos(2232​​)+2πn
3x=arccos(2232​​)+2πn,3x=2π−arccos(2232​​)+2πn
Solve 3x=arccos(2232​​)+2πn:x=3arccos(2232​​)​+32πn​
3x=arccos(2232​​)+2πn
Simplify arccos(2232​​)+2πn:arccos(231​1​)+2πn
arccos(2232​​)+2πn
2232​​=231​1​
2232​​
Apply exponent rule: xbxa​=xb−a1​2232​​=21−32​1​=21−32​1​
Subtract the numbers: 1−32​=31​=231​1​
=arccos(231​1​)+2πn
3x=arccos(231​1​)+2πn
Divide both sides by 3
3x=arccos(231​1​)+2πn
Divide both sides by 333x​=3arccos(231​1​)​+32πn​
Simplify
33x​=3arccos(231​1​)​+32πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 3arccos(231​1​)​+32πn​:3arccos(2232​​)​+32πn​
3arccos(231​1​)​+32πn​
arccos(231​1​)=arccos(2232​​)
arccos(231​1​)
=arccos(2232​​)
=3arccos(2232​​)​+32πn​
x=3arccos(2232​​)​+32πn​
x=3arccos(2232​​)​+32πn​
x=3arccos(2232​​)​+32πn​
Solve 3x=2π−arccos(2232​​)+2πn:x=32π​−3arccos(2232​​)​+32πn​
3x=2π−arccos(2232​​)+2πn
Simplify 2π−arccos(2232​​)+2πn:2π−arccos(231​1​)+2πn
2π−arccos(2232​​)+2πn
2232​​=231​1​
2232​​
Apply exponent rule: xbxa​=xb−a1​2232​​=21−32​1​=21−32​1​
Subtract the numbers: 1−32​=31​=231​1​
=2π−arccos(231​1​)+2πn
3x=2π−arccos(231​1​)+2πn
Divide both sides by 3
3x=2π−arccos(231​1​)+2πn
Divide both sides by 333x​=32π​−3arccos(231​1​)​+32πn​
Simplify
33x​=32π​−3arccos(231​1​)​+32πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 32π​−3arccos(231​1​)​+32πn​:32π​−3arccos(2232​​)​+32πn​
32π​−3arccos(231​1​)​+32πn​
arccos(231​1​)=arccos(2232​​)
arccos(231​1​)
=arccos(2232​​)
=32π​−3arccos(2232​​)​+32πn​
x=32π​−3arccos(2232​​)​+32πn​
x=32π​−3arccos(2232​​)​+32πn​
x=32π​−3arccos(2232​​)​+32πn​
x=3arccos(2232​​)​+32πn​,x=32π​−3arccos(2232​​)​+32πn​
Combine all the solutionsx=32πn​,x=3π​+32πn​,x=3arccos(2232​​)​+32πn​,x=32π​−3arccos(2232​​)​+32πn​
Express with sin, cos
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​
Simplify
(cos(3x)sin(3x)​)2=cos2(3x)sin2(3x)​
(cos(3x)sin(3x)​)2
Apply exponent rule: (ba​)c=bcac​=cos2(3x)sin2(3x)​
Multiply fractions: a⋅cb​=ca⋅b​
Apply exponent rule: ab⋅ac=ab+csin(3x)sin(3x)=sin1+1(3x)
Add the numbers: 1+1=2
Convert element to fraction: 232​sin2(3x)=1232​sin2(3x)​
Least Common Multiplier of cos2(3x),1,cos(3x):cos2(3x)
cos2(3x),1,cos(3x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear in at least one of the factored expressions=cos2(3x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos2(3x)
For 1232​sin2(3x)​:multiply the denominator and numerator by cos2(3x)1232​sin2(3x)​=1⋅cos2(3x)232​sin2(3x)cos2(3x)​=cos2(3x)232​sin2(3x)cos2(3x)​
For multiply the denominator and numerator by cos(3x)
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​
g(x)f(x)​=0⇒f(x)=0
Factor
Factor out common term sin2(3x)
Solving each part separately
sin2(3x)=0:x=32πn​,x=3π​+32πn​
sin2(3x)=0
Apply rule xn=0⇒x=0
sin(3x)=0
General solutions for sin(3x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
3x=0+2πn,3x=π+2πn
3x=0+2πn,3x=π+2πn
Solve 3x=0+2πn:x=32πn​
3x=0+2πn
0+2πn=2πn3x=2πn
Divide both sides by 3
3x=2πn
Divide both sides by 333x​=32πn​
Simplifyx=32πn​
x=32πn​
Solve 3x=π+2πn:x=3π​+32πn​
3x=π+2πn
Divide both sides by 3
3x=π+2πn
Divide both sides by 333x​=3π​+32πn​
Simplifyx=3π​+32πn​
x=3π​+32πn​
x=32πn​,x=3π​+32πn​
No Solution
Solve by substitution
Let: cos(3x)=u
Solve with the quadratic formula
Quadratic Equation Formula:
For
Simplify
Apply radical rule: =(231​)2
Apply exponent rule: (ab)c=abc=231​⋅2
31​⋅2=32​
31​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=31⋅2​
Multiply the numbers: 1⋅2=2=32​
=232​
4⋅232​⋅1=4⋅232​
4⋅232​⋅1
Multiply the numbers: 4⋅1=4=4⋅232​
=232​−4⋅232​​
Add similar elements: 232​−4⋅232​=−3⋅232​=−3⋅232​​
Apply radical rule: −a​=−1​a​−3⋅232​​=−1​3⋅232​​=−1​3⋅232​​
Apply imaginary number rule: −1​=i=i3⋅232​​
Apply radical rule: assuming a≥0,b≥03⋅232​​=3​232​​=3​i232​​
Separate the solutions
Multiply by the conjugate
Simplify
Apply the distributive law: a(b+c)=ab+ac
Apply minus-plus rules+(−a)=−a
Apply exponent rule: ab⋅ac=ab+c=231​+31​
Add similar elements: 31​+31​=2⋅31​=22⋅31​
Multiply 2⋅31​:32​
2⋅31​
Multiply fractions: a⋅cb​=ca⋅b​=31⋅2​
Multiply the numbers: 1⋅2=2=32​
=232​
Apply exponent rule: ab⋅ac=ab+c=21+32​+31​
Join 1+32​+31​:2
1+32​+31​
Convert element to fraction: 1=11​=11​+32​+31​
Least Common Multiplier of 1,3,3:3
1,3,3
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Compute a number comprised of factors that appear in at least one of the following:
1,3,3
=3
Multiply the numbers: 3=3=3
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 3
For 11​:multiply the denominator and numerator by 311​=1⋅31⋅3​=33​
=33​+32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=33+2+1​
Add the numbers: 3+2+1=6=36​
Divide the numbers: 36​=2=2
=22
22=4=4
Rewrite in standard complex form:
Apply the fraction rule: ca±b​=ca​±cb​
4232​​
Factor 4:22
Factor 4=22
=22232​​
Cancel 22232​​:234​1​
22232​​
Apply exponent rule: xbxa​=xb−a1​22232​​=22−32​1​=22−32​1​
Subtract the numbers: 2−32​=34​=234​1​
=234​1​
234​
234​=21+31​=21+31​
Apply exponent rule: xa+b=xaxb=21⋅231​
Refine
Factor 4:22
Factor 4=22
Cancel
Apply radical rule: =22231​3​i232​​​
Apply exponent rule: xbxa​=xb−a1​22231​​=22−31​1​=22−31​3​i232​​​
Subtract the numbers: 2−31​=35​=235​3​i232​​​
=235​3​i232​​​
235​=2⋅232​
235​
235​=21+32​=21+32​
Apply exponent rule: xa+b=xaxb=21⋅232​
Refine=2⋅232​
=2⋅232​3​i232​​​
2⋅232​3​232​​​
Multiply by the conjugate
Apply exponent rule: ab⋅ac=ab+c=21+32​+31​
Join 1+32​+31​:2
1+32​+31​
Convert element to fraction: 1=11​=11​+32​+31​
Least Common Multiplier of 1,3,3:3
1,3,3
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Compute a number comprised of factors that appear in at least one of the following:
1,3,3
=3
Multiply the numbers: 3=3=3
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 3
For 11​:multiply the denominator and numerator by 311​=1⋅31⋅3​=33​
=33​+32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=33+2+1​
Add the numbers: 3+2+1=6=36​
Divide the numbers: 36​=2=2
=22
22=4=4
Multiply by the conjugate 232​232​​
1⋅232​=232​
Apply exponent rule: ab⋅ac=ab+c=21+32​+31​
Join 1+32​+31​:2
1+32​+31​
Convert element to fraction: 1=11​=11​+32​+31​
Least Common Multiplier of 1,3,3:3
1,3,3
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Compute a number comprised of factors that appear in at least one of the following:
1,3,3
=3
Multiply the numbers: 3=3=3
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 3
For 11​:multiply the denominator and numerator by 311​=1⋅31⋅3​=33​
=33​+32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=33+2+1​
Add the numbers: 3+2+1=6=36​
Divide the numbers: 36​=2=2
=22
22=4=4
=−4232​​
Multiply by the conjugate
Simplify
Apply the distributive law: a(b−c)=ab−ac
Apply minus-plus rules+(−a)=−a
Apply exponent rule: ab⋅ac=ab+c=231​+31​
Add similar elements: 31​+31​=2⋅31​=22⋅31​
Multiply 2⋅31​:32​
2⋅31​
Multiply fractions: a⋅cb​=ca⋅b​=31⋅2​
Multiply the numbers: 1⋅2=2=32​
=232​
Apply exponent rule: ab⋅ac=ab+c=21+32​+31​
Join 1+32​+31​:2
1+32​+31​
Convert element to fraction: 1=11​=11​+32​+31​
Least Common Multiplier of 1,3,3:3
1,3,3
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Compute a number comprised of factors that appear in at least one of the following:
1,3,3
=3
Multiply the numbers: 3=3=3
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 3
For 11​:multiply the denominator and numerator by 311​=1⋅31⋅3​=33​
=33​+32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=33+2+1​
Add the numbers: 3+2+1=6=36​
Divide the numbers: 36​=2=2
=22
22=4=4
Rewrite in standard complex form:
Apply the fraction rule: ca±b​=ca​±cb​
4232​​
Factor 4:22
Factor 4=22
=22232​​
Cancel 22232​​:234​1​
22232​​
Apply exponent rule: xbxa​=xb−a1​22232​​=22−32​1​=22−32​1​
Subtract the numbers: 2−32​=34​=234​1​
=234​1​
234​
234​=21+31​=21+31​
Apply exponent rule: xa+b=xaxb=21⋅231​
Refine
Factor 4:22
Factor 4=22
Cancel
Apply radical rule: =22231​3​i232​​​
Apply exponent rule: xbxa​=xb−a1​22231​​=22−31​1​=22−31​3​i232​​​
Subtract the numbers: 2−31​=35​=235​3​i232​​​
=235​3​i232​​​
235​=2⋅232​
235​
235​=21+32​=21+32​
Apply exponent rule: xa+b=xaxb=21⋅232​
Refine=2⋅232​
=2⋅232​3​i232​​​
−2⋅232​3​232​​​
Multiply by the conjugate
Apply exponent rule: ab⋅ac=ab+c=21+32​+31​
Join 1+32​+31​:2
1+32​+31​
Convert element to fraction: 1=11​=11​+32​+31​
Least Common Multiplier of 1,3,3:3
1,3,3
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Compute a number comprised of factors that appear in at least one of the following:
1,3,3
=3
Multiply the numbers: 3=3=3
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 3
For 11​:multiply the denominator and numerator by 311​=1⋅31⋅3​=33​
=33​+32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=33+2+1​
Add the numbers: 3+2+1=6=36​
Divide the numbers: 36​=2=2
=22
22=4=4
Multiply by the conjugate 232​232​​
1⋅232​=232​
Apply exponent rule: ab⋅ac=ab+c=21+32​+31​
Join 1+32​+31​:2
1+32​+31​
Convert element to fraction: 1=11​=11​+32​+31​
Least Common Multiplier of 1,3,3:3
1,3,3
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Compute a number comprised of factors that appear in at least one of the following:
1,3,3
=3
Multiply the numbers: 3=3=3
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 3
For 11​:multiply the denominator and numerator by 311​=1⋅31⋅3​=33​
=33​+32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=33+2+1​
Add the numbers: 3+2+1=6=36​
Divide the numbers: 36​=2=2
=22
22=4=4
=−4232​​
The solutions to the quadratic equation are:
Substitute back u=cos(3x)
No Solution
NoSolution
No Solution
NoSolution
Combine all the solutionsNoSolution
Combine all the solutionsx=32πn​,x=3π​+32πn​
Combine all the solutionsx=32πn​,x=3π​+32πn​,x=3arccos(2232​​)​+32πn​,x=32π​−3arccos(2232​​)​+32πn​
Show solutions in decimal formx=32πn​,x=3π​+32πn​,x=30.65392…​+32πn​,x=32π​−30.65392…​+32πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cot^5(x)=(-1)/((sqrt(3)))2cos^4(x)cos(x)-cos^5(x)=1cos^4(x)-2sin^2(x)-1=0d^2(1+cos(x))-(1+cos(x))^2=sin^2(x)cos^4(x)-2cos^2(x)+1=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024