Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

d=(sin^4(x)-cos^2(x)+5)/(4*cos^2(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

d=4⋅cos2(x)sin4(x)−cos2(x)+5​

Solution

x=arcsin​2−1−4d+16d2+24d−15​​​​+2πn,x=π+arcsin​−2−1−4d+16d2+24d−15​​​​+2πn,x=arcsin​−2−1−4d+16d2+24d−15​​​​+2πn,x=π+arcsin​2−1−4d+16d2+24d−15​​​​+2πn,x=arcsin​2−1−4d−16d2+24d−15​​​​+2πn,x=π+arcsin​−2−1−4d−16d2+24d−15​​​​+2πn,x=arcsin​−2−1−4d−16d2+24d−15​​​​+2πn,x=π+arcsin​2−1−4d−16d2+24d−15​​​​+2πn
Solution steps
d=4cos2(x)sin4(x)−cos2(x)+5​
Switch sides4cos2(x)sin4(x)−cos2(x)+5​=d
Subtract d from both sides4cos2(x)sin4(x)−cos2(x)+5​−d=0
Simplify 4cos2(x)sin4(x)−cos2(x)+5​−d:4cos2(x)sin4(x)−cos2(x)+5−4dcos2(x)​
4cos2(x)sin4(x)−cos2(x)+5​−d
Convert element to fraction: d=4cos2(x)d4cos2(x)​=4cos2(x)sin4(x)−cos2(x)+5​−4cos2(x)d⋅4cos2(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4cos2(x)sin4(x)−cos2(x)+5−d⋅4cos2(x)​
4cos2(x)sin4(x)−cos2(x)+5−4dcos2(x)​=0
g(x)f(x)​=0⇒f(x)=0sin4(x)−cos2(x)+5−4dcos2(x)=0
Rewrite using trig identities
5−cos2(x)+sin4(x)−4cos2(x)d
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=5−(1−sin2(x))+sin4(x)−4(1−sin2(x))d
Simplify 5−(1−sin2(x))+sin4(x)−4(1−sin2(x))d:sin4(x)+sin2(x)+4dsin2(x)+4−4d
5−(1−sin2(x))+sin4(x)−4(1−sin2(x))d
=5−(1−sin2(x))+sin4(x)−4d(1−sin2(x))
−(1−sin2(x)):−1+sin2(x)
−(1−sin2(x))
Distribute parentheses=−(1)−(−sin2(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+sin2(x)
=5−1+sin2(x)+sin4(x)−4(1−sin2(x))d
Expand −4d(1−sin2(x)):−4d+4dsin2(x)
−4d(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=−4d,b=1,c=sin2(x)=−4d⋅1−(−4d)sin2(x)
Apply minus-plus rules−(−a)=a=−4⋅1⋅d+4dsin2(x)
Multiply the numbers: 4⋅1=4=−4d+4dsin2(x)
=5−1+sin2(x)+sin4(x)−4d+4dsin2(x)
Subtract the numbers: 5−1=4=sin4(x)+sin2(x)+4dsin2(x)+4−4d
=sin4(x)+sin2(x)+4dsin2(x)+4−4d
4+sin2(x)+sin4(x)−4d+4sin2(x)d=0
Solve by substitution
4+sin2(x)+sin4(x)−4d+4sin2(x)d=0
Let: sin(x)=u4+u2+u4−4d+4u2d=0
4+u2+u4−4d+4u2d=0:u=2−1−4d+16d2+24d−15​​​,u=−2−1−4d+16d2+24d−15​​​,u=2−1−4d−16d2+24d−15​​​,u=−2−1−4d−16d2+24d−15​​​
4+u2+u4−4d+4u2d=0
Write in the standard form an​xn+…+a1​x+d=0u4+(1+4d)u2+4−4d=0
Rewrite the equation with v=u2 and v2=u4v2+(1+4d)v+4−4d=0
Solve v2+(1+4d)v+4−4d=0:v=2−1−4d+16d2+24d−15​​,v=2−1−4d−16d2+24d−15​​
v2+(1+4d)v+4−4d=0
Solve with the quadratic formula
v2+(1+4d)v+4−4d=0
Quadratic Equation Formula:
For a=1,b=1+4d,c=4−4dv1,2​=2⋅1−(1+4d)±(1+4d)2−4⋅1⋅(4−4d)​​
v1,2​=2⋅1−(1+4d)±(1+4d)2−4⋅1⋅(4−4d)​​
Simplify (1+4d)2−4⋅1⋅(4−4d)​:16d2+24d−15​
(1+4d)2−4⋅1⋅(4−4d)​
Multiply the numbers: 4⋅1=4=(4d+1)2−4(−4d+4)​
Expand (1+4d)2−4(4−4d):16d2+24d−15
(1+4d)2−4(4−4d)
(1+4d)2:1+8d+16d2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=1,b=4d
=12+2⋅1⋅4d+(4d)2
Simplify 12+2⋅1⋅4d+(4d)2:1+8d+16d2
12+2⋅1⋅4d+(4d)2
Apply rule 1a=112=1=1+2⋅1⋅4d+(4d)2
2⋅1⋅4d=8d
2⋅1⋅4d
Multiply the numbers: 2⋅1⋅4=8=8d
(4d)2=16d2
(4d)2
Apply exponent rule: (a⋅b)n=anbn=42d2
42=16=16d2
=1+8d+16d2
=1+8d+16d2
=1+8d+16d2−4(4−4d)
Expand −4(4−4d):−16+16d
−4(4−4d)
Apply the distributive law: a(b−c)=ab−aca=−4,b=4,c=4d=−4⋅4−(−4)⋅4d
Apply minus-plus rules−(−a)=a=−4⋅4+4⋅4d
Multiply the numbers: 4⋅4=16=−16+16d
=1+8d+16d2−16+16d
Simplify 1+8d+16d2−16+16d:16d2+24d−15
1+8d+16d2−16+16d
Group like terms=16d2+8d+16d+1−16
Add similar elements: 8d+16d=24d=16d2+24d+1−16
Add/Subtract the numbers: 1−16=−15=16d2+24d−15
=16d2+24d−15
=16d2+24d−15​
v1,2​=2⋅1−(1+4d)±16d2+24d−15​​
Separate the solutionsv1​=2⋅1−(1+4d)+16d2+24d−15​​,v2​=2⋅1−(1+4d)−16d2+24d−15​​
v=2⋅1−(1+4d)+16d2+24d−15​​:2−1−4d+16d2+24d−15​​
2⋅1−(1+4d)+16d2+24d−15​​
Multiply the numbers: 2⋅1=2=2−(4d+1)+16d2+24d−15​​
−(1+4d):−1−4d
−(1+4d)
Distribute parentheses=−(1)−(4d)
Apply minus-plus rules+(−a)=−a=−1−4d
=2−1−4d+16d2+24d−15​​
v=2⋅1−(1+4d)−16d2+24d−15​​:2−1−4d−16d2+24d−15​​
2⋅1−(1+4d)−16d2+24d−15​​
Multiply the numbers: 2⋅1=2=2−(4d+1)−16d2+24d−15​​
−(1+4d):−1−4d
−(1+4d)
Distribute parentheses=−(1)−(4d)
Apply minus-plus rules+(−a)=−a=−1−4d
=2−1−4d−16d2+24d−15​​
The solutions to the quadratic equation are:v=2−1−4d+16d2+24d−15​​,v=2−1−4d−16d2+24d−15​​
v=2−1−4d+16d2+24d−15​​,v=2−1−4d−16d2+24d−15​​
Substitute back v=u2,solve for u
Solve u2=2−1−4d+16d2+24d−15​​:u=2−1−4d+16d2+24d−15​​​,u=−2−1−4d+16d2+24d−15​​​
u2=2−1−4d+16d2+24d−15​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=2−1−4d+16d2+24d−15​​​,u=−2−1−4d+16d2+24d−15​​​
Solve u2=2−1−4d−16d2+24d−15​​:u=2−1−4d−16d2+24d−15​​​,u=−2−1−4d−16d2+24d−15​​​
u2=2−1−4d−16d2+24d−15​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=2−1−4d−16d2+24d−15​​​,u=−2−1−4d−16d2+24d−15​​​
The solutions are
u=2−1−4d+16d2+24d−15​​​,u=−2−1−4d+16d2+24d−15​​​,u=2−1−4d−16d2+24d−15​​​,u=−2−1−4d−16d2+24d−15​​​
Substitute back u=sin(x)sin(x)=2−1−4d+16d2+24d−15​​​,sin(x)=−2−1−4d+16d2+24d−15​​​,sin(x)=2−1−4d−16d2+24d−15​​​,sin(x)=−2−1−4d−16d2+24d−15​​​
sin(x)=2−1−4d+16d2+24d−15​​​,sin(x)=−2−1−4d+16d2+24d−15​​​,sin(x)=2−1−4d−16d2+24d−15​​​,sin(x)=−2−1−4d−16d2+24d−15​​​
sin(x)=2−1−4d+16d2+24d−15​​​:x=arcsin​2−1−4d+16d2+24d−15​​​​+2πn,x=π+arcsin​−2−1−4d+16d2+24d−15​​​​+2πn
sin(x)=2−1−4d+16d2+24d−15​​​
Apply trig inverse properties
sin(x)=2−1−4d+16d2+24d−15​​​
General solutions for sin(x)=2−1−4d+16d2+24d−15​​​sin(x)=a⇒x=arcsin(a)+2πn,x=π+arcsin(a)+2πnx=arcsin​2−1−4d+16d2+24d−15​​​​+2πn,x=π+arcsin​−2−1−4d+16d2+24d−15​​​​+2πn
x=arcsin​2−1−4d+16d2+24d−15​​​​+2πn,x=π+arcsin​−2−1−4d+16d2+24d−15​​​​+2πn
sin(x)=−2−1−4d+16d2+24d−15​​​:x=arcsin​−2−1−4d+16d2+24d−15​​​​+2πn,x=π+arcsin​2−1−4d+16d2+24d−15​​​​+2πn
sin(x)=−2−1−4d+16d2+24d−15​​​
Apply trig inverse properties
sin(x)=−2−1−4d+16d2+24d−15​​​
General solutions for sin(x)=−2−1−4d+16d2+24d−15​​​sin(x)=a⇒x=arcsin(a)+2πn,x=π+arcsin(a)+2πnx=arcsin​−2−1−4d+16d2+24d−15​​​​+2πn,x=π+arcsin​2−1−4d+16d2+24d−15​​​​+2πn
x=arcsin​−2−1−4d+16d2+24d−15​​​​+2πn,x=π+arcsin​2−1−4d+16d2+24d−15​​​​+2πn
sin(x)=2−1−4d−16d2+24d−15​​​:x=arcsin​2−1−4d−16d2+24d−15​​​​+2πn,x=π+arcsin​−2−1−4d−16d2+24d−15​​​​+2πn
sin(x)=2−1−4d−16d2+24d−15​​​
Apply trig inverse properties
sin(x)=2−1−4d−16d2+24d−15​​​
General solutions for sin(x)=2−1−4d−16d2+24d−15​​​sin(x)=a⇒x=arcsin(a)+2πn,x=π+arcsin(a)+2πnx=arcsin​2−1−4d−16d2+24d−15​​​​+2πn,x=π+arcsin​−2−1−4d−16d2+24d−15​​​​+2πn
x=arcsin​2−1−4d−16d2+24d−15​​​​+2πn,x=π+arcsin​−2−1−4d−16d2+24d−15​​​​+2πn
sin(x)=−2−1−4d−16d2+24d−15​​​:x=arcsin​−2−1−4d−16d2+24d−15​​​​+2πn,x=π+arcsin​2−1−4d−16d2+24d−15​​​​+2πn
sin(x)=−2−1−4d−16d2+24d−15​​​
Apply trig inverse properties
sin(x)=−2−1−4d−16d2+24d−15​​​
General solutions for sin(x)=−2−1−4d−16d2+24d−15​​​sin(x)=a⇒x=arcsin(a)+2πn,x=π+arcsin(a)+2πnx=arcsin​−2−1−4d−16d2+24d−15​​​​+2πn,x=π+arcsin​2−1−4d−16d2+24d−15​​​​+2πn
x=arcsin​−2−1−4d−16d2+24d−15​​​​+2πn,x=π+arcsin​2−1−4d−16d2+24d−15​​​​+2πn
Combine all the solutionsx=arcsin​2−1−4d+16d2+24d−15​​​​+2πn,x=π+arcsin​−2−1−4d+16d2+24d−15​​​​+2πn,x=arcsin​−2−1−4d+16d2+24d−15​​​​+2πn,x=π+arcsin​2−1−4d+16d2+24d−15​​​​+2πn,x=arcsin​2−1−4d−16d2+24d−15​​​​+2πn,x=π+arcsin​−2−1−4d−16d2+24d−15​​​​+2πn,x=arcsin​−2−1−4d−16d2+24d−15​​​​+2πn,x=π+arcsin​2−1−4d−16d2+24d−15​​​​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2+cos^2(x)=5sin(x)tan^3(3x)-2sin^3(3x)=0cot^5(x)=(-1)/((sqrt(3)))2cos^4(x)cos(x)-cos^5(x)=1cos^4(x)-2sin^2(x)-1=0

Frequently Asked Questions (FAQ)

  • What is the general solution for d=(sin^4(x)-cos^2(x)+5)/(4*cos^2(x)) ?

    The general solution for d=(sin^4(x)-cos^2(x)+5)/(4*cos^2(x)) is
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024