Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sec^2(b)=2+tan(b)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec2(b)=2+tan(b)

Solution

b=1.01722…+πn,b=−0.55357…+πn
+1
Degrees
b=58.28252…∘+180∘n,b=−31.71747…∘+180∘n
Solution steps
sec2(b)=2+tan(b)
Subtract 2+tan(b) from both sidessec2(b)−2−tan(b)=0
Rewrite using trig identities
−2+sec2(b)−tan(b)
Use the Pythagorean identity: sec2(x)=tan2(x)+1=−2+tan2(b)+1−tan(b)
Simplify −2+tan2(b)+1−tan(b):tan2(b)−tan(b)−1
−2+tan2(b)+1−tan(b)
Group like terms=tan2(b)−tan(b)−2+1
Add/Subtract the numbers: −2+1=−1=tan2(b)−tan(b)−1
=tan2(b)−tan(b)−1
−1−tan(b)+tan2(b)=0
Solve by substitution
−1−tan(b)+tan2(b)=0
Let: tan(b)=u−1−u+u2=0
−1−u+u2=0:u=21+5​​,u=21−5​​
−1−u+u2=0
Write in the standard form ax2+bx+c=0u2−u−1=0
Solve with the quadratic formula
u2−u−1=0
Quadratic Equation Formula:
For a=1,b=−1,c=−1u1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅(−1)​​
u1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅(−1)​​
(−1)2−4⋅1⋅(−1)​=5​
(−1)2−4⋅1⋅(−1)​
Apply rule −(−a)=a=(−1)2+4⋅1⋅1​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅1⋅1=4
4⋅1⋅1
Multiply the numbers: 4⋅1⋅1=4=4
=1+4​
Add the numbers: 1+4=5=5​
u1,2​=2⋅1−(−1)±5​​
Separate the solutionsu1​=2⋅1−(−1)+5​​,u2​=2⋅1−(−1)−5​​
u=2⋅1−(−1)+5​​:21+5​​
2⋅1−(−1)+5​​
Apply rule −(−a)=a=2⋅11+5​​
Multiply the numbers: 2⋅1=2=21+5​​
u=2⋅1−(−1)−5​​:21−5​​
2⋅1−(−1)−5​​
Apply rule −(−a)=a=2⋅11−5​​
Multiply the numbers: 2⋅1=2=21−5​​
The solutions to the quadratic equation are:u=21+5​​,u=21−5​​
Substitute back u=tan(b)tan(b)=21+5​​,tan(b)=21−5​​
tan(b)=21+5​​,tan(b)=21−5​​
tan(b)=21+5​​:b=arctan(21+5​​)+πn
tan(b)=21+5​​
Apply trig inverse properties
tan(b)=21+5​​
General solutions for tan(b)=21+5​​tan(x)=a⇒x=arctan(a)+πnb=arctan(21+5​​)+πn
b=arctan(21+5​​)+πn
tan(b)=21−5​​:b=arctan(21−5​​)+πn
tan(b)=21−5​​
Apply trig inverse properties
tan(b)=21−5​​
General solutions for tan(b)=21−5​​tan(x)=−a⇒x=arctan(−a)+πnb=arctan(21−5​​)+πn
b=arctan(21−5​​)+πn
Combine all the solutionsb=arctan(21+5​​)+πn,b=arctan(21−5​​)+πn
Show solutions in decimal formb=1.01722…+πn,b=−0.55357…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos^{23}(x)+cos^2(x)=0sin(b)=0.775-2cos^2(x)+3sin(x)+3=02cos^2(x)=sqrt(3)*cos(x)4(cos(x)+1)cos(x)=3

Frequently Asked Questions (FAQ)

  • What is the general solution for sec^2(b)=2+tan(b) ?

    The general solution for sec^2(b)=2+tan(b) is b=1.01722…+pin,b=-0.55357…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024