Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^4(x)+cos^2(x)=2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin4(x)+cos2(x)=2

Solution

NoSolutionforx∈R
Solution steps
sin4(x)+cos2(x)=2
Subtract 2 from both sidessin4(x)+cos2(x)−2=0
Rewrite using trig identities
−2+cos2(x)+sin4(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−2+1−sin2(x)+sin4(x)
Simplify=sin4(x)−sin2(x)−1
−1−sin2(x)+sin4(x)=0
Solve by substitution
−1−sin2(x)+sin4(x)=0
Let: sin(x)=u−1−u2+u4=0
−1−u2+u4=0:u=21+5​​​,u=−21+5​​​,u=21−5​​​,u=−21−5​​​
−1−u2+u4=0
Write in the standard form an​xn+…+a1​x+a0​=0u4−u2−1=0
Rewrite the equation with v=u2 and v2=u4v2−v−1=0
Solve v2−v−1=0:v=21+5​​,v=21−5​​
v2−v−1=0
Solve with the quadratic formula
v2−v−1=0
Quadratic Equation Formula:
For a=1,b=−1,c=−1v1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅(−1)​​
v1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅(−1)​​
(−1)2−4⋅1⋅(−1)​=5​
(−1)2−4⋅1⋅(−1)​
Apply rule −(−a)=a=(−1)2+4⋅1⋅1​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅1⋅1=4
4⋅1⋅1
Multiply the numbers: 4⋅1⋅1=4=4
=1+4​
Add the numbers: 1+4=5=5​
v1,2​=2⋅1−(−1)±5​​
Separate the solutionsv1​=2⋅1−(−1)+5​​,v2​=2⋅1−(−1)−5​​
v=2⋅1−(−1)+5​​:21+5​​
2⋅1−(−1)+5​​
Apply rule −(−a)=a=2⋅11+5​​
Multiply the numbers: 2⋅1=2=21+5​​
v=2⋅1−(−1)−5​​:21−5​​
2⋅1−(−1)−5​​
Apply rule −(−a)=a=2⋅11−5​​
Multiply the numbers: 2⋅1=2=21−5​​
The solutions to the quadratic equation are:v=21+5​​,v=21−5​​
v=21+5​​,v=21−5​​
Substitute back v=u2,solve for u
Solve u2=21+5​​:u=21+5​​​,u=−21+5​​​
u2=21+5​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=21+5​​​,u=−21+5​​​
Solve u2=21−5​​:u=21−5​​​,u=−21−5​​​
u2=21−5​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=21−5​​​,u=−21−5​​​
The solutions are
u=21+5​​​,u=−21+5​​​,u=21−5​​​,u=−21−5​​​
Substitute back u=sin(x)sin(x)=21+5​​​,sin(x)=−21+5​​​,sin(x)=21−5​​​,sin(x)=−21−5​​​
sin(x)=21+5​​​,sin(x)=−21+5​​​,sin(x)=21−5​​​,sin(x)=−21−5​​​
sin(x)=21+5​​​:No Solution
sin(x)=21+5​​​
−1≤sin(x)≤1NoSolution
sin(x)=−21+5​​​:No Solution
sin(x)=−21+5​​​
−1≤sin(x)≤1NoSolution
sin(x)=21−5​​​:x=arcsin​21−5​​​​+2πn,x=π+arcsin​−21−5​​​​+2πn
sin(x)=21−5​​​
Apply trig inverse properties
sin(x)=21−5​​​
General solutions for sin(x)=21−5​​​sin(x)=a⇒x=arcsin(a)+2πn,x=π+arcsin(a)+2πnx=arcsin​21−5​​​​+2πn,x=π+arcsin​−21−5​​​​+2πn
x=arcsin​21−5​​​​+2πn,x=π+arcsin​−21−5​​​​+2πn
sin(x)=−21−5​​​:x=arcsin​−21−5​​​​+2πn,x=π+arcsin​21−5​​​​+2πn
sin(x)=−21−5​​​
Apply trig inverse properties
sin(x)=−21−5​​​
General solutions for sin(x)=−21−5​​​sin(x)=a⇒x=arcsin(a)+2πn,x=π+arcsin(a)+2πnx=arcsin​−21−5​​​​+2πn,x=π+arcsin​21−5​​​​+2πn
x=arcsin​−21−5​​​​+2πn,x=π+arcsin​21−5​​​​+2πn
Combine all the solutionsx=arcsin​21−5​​​​+2πn,x=π+arcsin​−21−5​​​​+2πn,x=arcsin​−21−5​​​​+2πn,x=π+arcsin​21−5​​​​+2πn
Since the equation is undefined for:arcsin​21−5​​​​+2πn,π+arcsin​−21−5​​​​+2πn,arcsin​−21−5​​​​+2πn,π+arcsin​21−5​​​​+2πnNoSolutionforx∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

5tan(x)=15cot(x)solvefor x,arctan(x)=arctan(y)cos(x+10)-cos(x+90)=12cos(x)-2sqrt(3)*sin(x)=sqrt(8)((cot(x)-sqrt(3)))/((2sin(x)+1))=0

Frequently Asked Questions (FAQ)

  • What is the general solution for sin^4(x)+cos^2(x)=2 ?

    The general solution for sin^4(x)+cos^2(x)=2 is No Solution for x\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024