Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3cos^2(x)+4cos^4(x)-5=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3cos2(x)+4cos4(x)−5=0

Solution

x=0.45831…+2πn,x=2π−0.45831…+2πn,x=2.68327…+2πn,x=−2.68327…+2πn
+1
Degrees
x=26.25960…∘+360∘n,x=333.74039…∘+360∘n,x=153.74039…∘+360∘n,x=−153.74039…∘+360∘n
Solution steps
3cos2(x)+4cos4(x)−5=0
Solve by substitution
3cos2(x)+4cos4(x)−5=0
Let: cos(x)=u3u2+4u4−5=0
3u2+4u4−5=0:u=42​−3+89​​​,u=−42​−3+89​​​,u=i42​3+89​​​,u=−i42​3+89​​​
3u2+4u4−5=0
Write in the standard form an​xn+…+a1​x+a0​=04u4+3u2−5=0
Rewrite the equation with v=u2 and v2=u44v2+3v−5=0
Solve 4v2+3v−5=0:v=8−3+89​​,v=8−3−89​​
4v2+3v−5=0
Solve with the quadratic formula
4v2+3v−5=0
Quadratic Equation Formula:
For a=4,b=3,c=−5v1,2​=2⋅4−3±32−4⋅4(−5)​​
v1,2​=2⋅4−3±32−4⋅4(−5)​​
32−4⋅4(−5)​=89​
32−4⋅4(−5)​
Apply rule −(−a)=a=32+4⋅4⋅5​
Multiply the numbers: 4⋅4⋅5=80=32+80​
32=9=9+80​
Add the numbers: 9+80=89=89​
v1,2​=2⋅4−3±89​​
Separate the solutionsv1​=2⋅4−3+89​​,v2​=2⋅4−3−89​​
v=2⋅4−3+89​​:8−3+89​​
2⋅4−3+89​​
Multiply the numbers: 2⋅4=8=8−3+89​​
v=2⋅4−3−89​​:8−3−89​​
2⋅4−3−89​​
Multiply the numbers: 2⋅4=8=8−3−89​​
The solutions to the quadratic equation are:v=8−3+89​​,v=8−3−89​​
v=8−3+89​​,v=8−3−89​​
Substitute back v=u2,solve for u
Solve u2=8−3+89​​:u=42​−3+89​​​,u=−42​−3+89​​​
u2=8−3+89​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=8−3+89​​​,u=−8−3+89​​​
8−3+89​​​=42​−3+89​​​
8−3+89​​​
Apply radical rule: assuming a≥0,b≥0=8​−3+89​​​
8​=22​
8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: =2​22​
Apply radical rule: 22​=2=22​
=22​89​−3​​
Rationalize 22​−3+89​​​:42​89​−3​​
22​−3+89​​​
Multiply by the conjugate 2​2​​=22​2​−3+89​​2​​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=42​−3+89​​​
=42​89​−3​​
=42​−3+89​​​
−8−3+89​​​=−42​−3+89​​​
−8−3+89​​​
Simplify 8−3+89​​​:22​−3+89​​​
8−3+89​​​
Apply radical rule: assuming a≥0,b≥0=8​−3+89​​​
8​=22​
8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: =2​22​
Apply radical rule: 22​=2=22​
=22​89​−3​​
=−22​89​−3​​
Rationalize −22​89​−3​​:−42​89​−3​​
−22​89​−3​​
Multiply by the conjugate 2​2​​=−22​2​−3+89​​2​​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=−42​−3+89​​​
=−42​89​−3​​
=−42​−3+89​​​
u=42​−3+89​​​,u=−42​−3+89​​​
Solve u2=8−3−89​​:u=i42​3+89​​​,u=−i42​3+89​​​
u2=8−3−89​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=8−3−89​​​,u=−8−3−89​​​
Simplify 8−3−89​​​:i42​3+89​​​
8−3−89​​​
Apply radical rule: assuming a≥0,b≥0=8​−3−89​​​
8​=22​
8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: =2​22​
Apply radical rule: 22​=2=22​
=22​−3−89​​​
Apply imaginary number rule: −a​=ia​=22​i3+89​​​
Rationalize 22​i3+89​​​:42​i3+89​​​
22​i3+89​​​
Multiply by the conjugate 2​2​​=22​2​i3+89​​2​​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=42​i3+89​​​
=42​i3+89​​​
Rewrite 42​i3+89​​​ in standard complex form: 42​3+89​​​i
42​i3+89​​​
Factor 4:22
Factor 4=22
=222​i3+89​​​
Cancel 222​i3+89​​​:223​i3+89​​​
222​i3+89​​​
Apply radical rule: 2​=221​=22221​i3+89​​​
Apply exponent rule: xbxa​=xb−a1​22221​​=22−21​1​=22−21​i3+89​​​
Subtract the numbers: 2−21​=23​=223​i3+89​​​
=223​i3+89​​​
223​=22​
223​
223​=21+21​=21+21​
Apply exponent rule: xa+b=xaxb=21⋅221​
Refine=22​
=22​i3+89​​​
22​3+89​​​=42​3+89​​​
22​3+89​​​
Multiply by the conjugate 2​2​​=22​2​3+89​​2​​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=42​3+89​​​
=42​3+89​​​i
=42​3+89​​​i
Simplify −8−3−89​​​:−i42​3+89​​​
−8−3−89​​​
Simplify 8−3−89​​​:22​i3+89​​​
8−3−89​​​
Apply radical rule: assuming a≥0,b≥0=8​−3−89​​​
8​=22​
8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: =2​22​
Apply radical rule: 22​=2=22​
=22​−3−89​​​
Apply imaginary number rule: −a​=ia​=22​i3+89​​​
=−22​i3+89​​​
Rationalize −22​i3+89​​​:−42​i3+89​​​
−22​i3+89​​​
Multiply by the conjugate 2​2​​=−22​2​i3+89​​2​​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=−42​i3+89​​​
=−42​i3+89​​​
Rewrite −42​i3+89​​​ in standard complex form: −42​3+89​​​i
−42​i3+89​​​
Cancel 42​i3+89​​​:22​i3+89​​​
42​i3+89​​​
Factor 4:22
Factor 4=22
=222​i3+89​​​
Cancel 222​i3+89​​​:223​i3+89​​​
222​i3+89​​​
Apply radical rule: 2​=221​=22221​i3+89​​​
Apply exponent rule: xbxa​=xb−a1​22221​​=22−21​1​=22−21​i3+89​​​
Subtract the numbers: 2−21​=23​=223​i3+89​​​
=223​i3+89​​​
223​=22​
223​
223​=21+21​=21+21​
Apply exponent rule: xa+b=xaxb=21⋅221​
Refine=22​
=22​i3+89​​​
=−22​i3+89​​​
−22​3+89​​​=−42​3+89​​​
−22​3+89​​​
Multiply by the conjugate 2​2​​=−22​2​3+89​​2​​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=−42​3+89​​​
=−42​3+89​​​i
=−42​3+89​​​i
u=i42​3+89​​​,u=−i42​3+89​​​
The solutions are
u=42​−3+89​​​,u=−42​−3+89​​​,u=i42​3+89​​​,u=−i42​3+89​​​
Substitute back u=cos(x)cos(x)=42​−3+89​​​,cos(x)=−42​−3+89​​​,cos(x)=i42​3+89​​​,cos(x)=−i42​3+89​​​
cos(x)=42​−3+89​​​,cos(x)=−42​−3+89​​​,cos(x)=i42​3+89​​​,cos(x)=−i42​3+89​​​
cos(x)=42​−3+89​​​:x=arccos(42​−3+89​​​)+2πn,x=2π−arccos(42​−3+89​​​)+2πn
cos(x)=42​−3+89​​​
Apply trig inverse properties
cos(x)=42​−3+89​​​
General solutions for cos(x)=42​−3+89​​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(42​−3+89​​​)+2πn,x=2π−arccos(42​−3+89​​​)+2πn
x=arccos(42​−3+89​​​)+2πn,x=2π−arccos(42​−3+89​​​)+2πn
cos(x)=−42​−3+89​​​:x=arccos(−42​−3+89​​​)+2πn,x=−arccos(−42​−3+89​​​)+2πn
cos(x)=−42​−3+89​​​
Apply trig inverse properties
cos(x)=−42​−3+89​​​
General solutions for cos(x)=−42​−3+89​​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−42​−3+89​​​)+2πn,x=−arccos(−42​−3+89​​​)+2πn
x=arccos(−42​−3+89​​​)+2πn,x=−arccos(−42​−3+89​​​)+2πn
cos(x)=i42​3+89​​​:No Solution
cos(x)=i42​3+89​​​
NoSolution
cos(x)=−i42​3+89​​​:No Solution
cos(x)=−i42​3+89​​​
NoSolution
Combine all the solutionsx=arccos(42​−3+89​​​)+2πn,x=2π−arccos(42​−3+89​​​)+2πn,x=arccos(−42​−3+89​​​)+2πn,x=−arccos(−42​−3+89​​​)+2πn
Show solutions in decimal formx=0.45831…+2πn,x=2π−0.45831…+2πn,x=2.68327…+2πn,x=−2.68327…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(2x+3)=03cos^2(x)-2sin(x)=3sin(x)-sin^2(x)5tan(y)-1= 1/(5tan(y))d^2+d=cos(x)sin(x)= 12/60
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024