Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(sin^2(a)+1)/(tan^2(a))=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan2(a)sin2(a)+1​=1

Solution

a=0.90455…+2πn,a=π−0.90455…+2πn,a=−0.90455…+2πn,a=π+0.90455…+2πn
+1
Degrees
a=51.82729…∘+360∘n,a=128.17270…∘+360∘n,a=−51.82729…∘+360∘n,a=231.82729…∘+360∘n
Solution steps
tan2(a)sin2(a)+1​=1
Subtract 1 from both sidestan2(a)sin2(a)+1​−1=0
Simplify tan2(a)sin2(a)+1​−1:tan2(a)sin2(a)+1−tan2(a)​
tan2(a)sin2(a)+1​−1
Convert element to fraction: 1=tan2(a)1tan2(a)​=tan2(a)sin2(a)+1​−tan2(a)1⋅tan2(a)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=tan2(a)sin2(a)+1−1⋅tan2(a)​
Multiply: 1⋅tan2(a)=tan2(a)=tan2(a)sin2(a)+1−tan2(a)​
tan2(a)sin2(a)+1−tan2(a)​=0
g(x)f(x)​=0⇒f(x)=0sin2(a)+1−tan2(a)=0
Rewrite using trig identities
1+sin2(a)−tan2(a)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=1+sin2(a)−(cos(a)sin(a)​)2
Apply exponent rule: (ba​)c=bcac​=1+sin2(a)−cos2(a)sin2(a)​
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=1−1−sin2(a)sin2(a)​+sin2(a)
Combine the fractions −−sin2(a)+1sin2(a)​+sin2(a):−−sin2(a)+1sin4(a)​
−−sin2(a)+1sin2(a)​+sin2(a)
Convert element to fraction: sin2(a)=1−sin2(a)sin2(a)(1−sin2(a))​=−1−sin2(a)sin2(a)​+1−sin2(a)sin2(a)(1−sin2(a))​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1−sin2(a)−sin2(a)+sin2(a)(1−sin2(a))​
Expand −sin2(a)+sin2(a)(1−sin2(a)):−sin4(a)
−sin2(a)+sin2(a)(1−sin2(a))
Expand sin2(a)(1−sin2(a)):sin2(a)−sin4(a)
sin2(a)(1−sin2(a))
Apply the distributive law: a(b−c)=ab−aca=sin2(a),b=1,c=sin2(a)=sin2(a)⋅1−sin2(a)sin2(a)
=1⋅sin2(a)−sin2(a)sin2(a)
Simplify 1⋅sin2(a)−sin2(a)sin2(a):sin2(a)−sin4(a)
1⋅sin2(a)−sin2(a)sin2(a)
1⋅sin2(a)=sin2(a)
1⋅sin2(a)
Multiply: 1⋅sin2(a)=sin2(a)=sin2(a)
sin2(a)sin2(a)=sin4(a)
sin2(a)sin2(a)
Apply exponent rule: ab⋅ac=ab+csin2(a)sin2(a)=sin2+2(a)=sin2+2(a)
Add the numbers: 2+2=4=sin4(a)
=sin2(a)−sin4(a)
=sin2(a)−sin4(a)
=−sin2(a)+sin2(a)−sin4(a)
Add similar elements: −sin2(a)+sin2(a)=0=−sin4(a)
=1−sin2(a)−sin4(a)​
Apply the fraction rule: b−a​=−ba​=−1−sin2(a)sin4(a)​
1−1−sin2(a)sin4(a)​=0
1−1−sin2(a)sin4(a)​=0
Solve by substitution
1−1−sin2(a)sin4(a)​=0
Let: sin(a)=u1−1−u2u4​=0
1−1−u2u4​=0:u=i21+5​​​,u=−i21+5​​​,u=25​−1​​,u=−25​−1​​
1−1−u2u4​=0
Multiply both sides by 1−u2
1−1−u2u4​=0
Multiply both sides by 1−u21⋅(1−u2)−1−u2u4​(1−u2)=0⋅(1−u2)
Simplify
1⋅(1−u2)−1−u2u4​(1−u2)=0⋅(1−u2)
Simplify 1⋅(1−u2):1−u2
1⋅(1−u2)
Multiply: 1⋅(1−u2)=(1−u2)=(1−u2)
Remove parentheses: (a)=a=1−u2
Simplify −1−u2u4​(1−u2):−u4
−1−u2u4​(1−u2)
Multiply fractions: a⋅cb​=ca⋅b​=−1−u2u4(1−u2)​
Cancel the common factor: 1−u2=−u4
Simplify 0⋅(1−u2):0
0⋅(1−u2)
Apply rule 0⋅a=0=0
1−u2−u4=0
1−u2−u4=0
1−u2−u4=0
Solve 1−u2−u4=0:u=i21+5​​​,u=−i21+5​​​,u=25​−1​​,u=−25​−1​​
1−u2−u4=0
Write in the standard form an​xn+…+a1​x+a=0−u4−u2+1=0
Rewrite the equation with v=u2 and v2=u4−v2−v+1=0
Solve −v2−v+1=0:v=−21+5​​,v=25​−1​
−v2−v+1=0
Solve with the quadratic formula
−v2−v+1=0
Quadratic Equation Formula:
For a=−1,b=−1,c=1v1,2​=2(−1)−(−1)±(−1)2−4(−1)⋅1​​
v1,2​=2(−1)−(−1)±(−1)2−4(−1)⋅1​​
(−1)2−4(−1)⋅1​=5​
(−1)2−4(−1)⋅1​
Apply rule −(−a)=a=(−1)2+4⋅1⋅1​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅1⋅1=4
4⋅1⋅1
Multiply the numbers: 4⋅1⋅1=4=4
=1+4​
Add the numbers: 1+4=5=5​
v1,2​=2(−1)−(−1)±5​​
Separate the solutionsv1​=2(−1)−(−1)+5​​,v2​=2(−1)−(−1)−5​​
v=2(−1)−(−1)+5​​:−21+5​​
2(−1)−(−1)+5​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅11+5​​
Multiply the numbers: 2⋅1=2=−21+5​​
Apply the fraction rule: −ba​=−ba​=−21+5​​
v=2(−1)−(−1)−5​​:25​−1​
2(−1)−(−1)−5​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅11−5​​
Multiply the numbers: 2⋅1=2=−21−5​​
Apply the fraction rule: −b−a​=ba​1−5​=−(5​−1)=25​−1​
The solutions to the quadratic equation are:v=−21+5​​,v=25​−1​
v=−21+5​​,v=25​−1​
Substitute back v=u2,solve for u
Solve u2=−21+5​​:u=i21+5​​​,u=−i21+5​​​
u2=−21+5​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−21+5​​​,u=−−21+5​​​
Simplify −21+5​​​:i21+5​​​
−21+5​​​
Apply radical rule: −a​=−1​a​−21+5​​​=−1​21+5​​​=−1​21+5​​​
Apply imaginary number rule: −1​=i=i21+5​​​
Simplify −−21+5​​​:−i21+5​​​
−−21+5​​​
Simplify −21+5​​​:i21+5​​​
−21+5​​​
Apply radical rule: −a​=−1​a​−21+5​​​=−1​21+5​​​=−1​21+5​​​
Apply imaginary number rule: −1​=i=i21+5​​​
=−i21+5​​​
u=i21+5​​​,u=−i21+5​​​
Solve u2=25​−1​:u=25​−1​​,u=−25​−1​​
u2=25​−1​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=25​−1​​,u=−25​−1​​
The solutions are
u=i21+5​​​,u=−i21+5​​​,u=25​−1​​,u=−25​−1​​
u=i21+5​​​,u=−i21+5​​​,u=25​−1​​,u=−25​−1​​
Verify Solutions
Find undefined (singularity) points:u=1,u=−1
Take the denominator(s) of 1−1−u2u4​ and compare to zero
Solve 1−u2=0:u=1,u=−1
1−u2=0
Move 1to the right side
1−u2=0
Subtract 1 from both sides1−u2−1=0−1
Simplify−u2=−1
−u2=−1
Divide both sides by −1
−u2=−1
Divide both sides by −1−1−u2​=−1−1​
Simplifyu2=1
u2=1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Apply radical rule: 1​=1=1
−1​=−1
−1​
Apply radical rule: 1​=11​=1=−1
u=1,u=−1
The following points are undefinedu=1,u=−1
Combine undefined points with solutions:
u=i21+5​​​,u=−i21+5​​​,u=25​−1​​,u=−25​−1​​
Substitute back u=sin(a)sin(a)=i21+5​​​,sin(a)=−i21+5​​​,sin(a)=25​−1​​,sin(a)=−25​−1​​
sin(a)=i21+5​​​,sin(a)=−i21+5​​​,sin(a)=25​−1​​,sin(a)=−25​−1​​
sin(a)=i21+5​​​:No Solution
sin(a)=i21+5​​​
NoSolution
sin(a)=−i21+5​​​:No Solution
sin(a)=−i21+5​​​
NoSolution
sin(a)=25​−1​​:a=arcsin​25​−1​​​+2πn,a=π−arcsin​25​−1​​​+2πn
sin(a)=25​−1​​
Apply trig inverse properties
sin(a)=25​−1​​
General solutions for sin(a)=25​−1​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πna=arcsin​25​−1​​​+2πn,a=π−arcsin​25​−1​​​+2πn
a=arcsin​25​−1​​​+2πn,a=π−arcsin​25​−1​​​+2πn
sin(a)=−25​−1​​:a=arcsin​−25​−1​​​+2πn,a=π+arcsin​25​−1​​​+2πn
sin(a)=−25​−1​​
Apply trig inverse properties
sin(a)=−25​−1​​
General solutions for sin(a)=−25​−1​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πna=arcsin​−25​−1​​​+2πn,a=π+arcsin​25​−1​​​+2πn
a=arcsin​−25​−1​​​+2πn,a=π+arcsin​25​−1​​​+2πn
Combine all the solutionsa=arcsin​25​−1​​​+2πn,a=π−arcsin​25​−1​​​+2πn,a=arcsin​−25​−1​​​+2πn,a=π+arcsin​25​−1​​​+2πn
Show solutions in decimal forma=0.90455…+2πn,a=π−0.90455…+2πn,a=−0.90455…+2πn,a=π+0.90455…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2cos^2(x)=-3sin(x)cos(x)4cos^2(x)=sin^2(x)+32cos^2(x)-sin^2(x)-2sin(x)=0cos^2(x)+5cos(x)-2=0cos(2x)+cos(2x)+1=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024