Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(60-x)-sin(60+x)=(sqrt(3))/2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(60∘−x)−sin(60∘+x)=23​​

Solution

x=−60∘−360∘n,x=−120∘−360∘n
+1
Radians
x=−3π​−2πn,x=−32π​−2πn
Solution steps
sin(60∘−x)−sin(60∘+x)=23​​
Rewrite using trig identities
sin(60∘−x)−sin(60∘+x)
Use the Sum to Product identity: sin(s)−sin(t)=2sin(2s−t​)cos(2s+t​)=2sin(260∘−x−(60∘+x)​)cos(260∘−x+60∘+x​)
Simplify 2sin(260∘−x−(60∘+x)​)cos(260∘−x+60∘+x​):sin(−x)
2sin(260∘−x−(60∘+x)​)cos(260∘−x+60∘+x​)
260∘−x−(60∘+x)​=−x
260∘−x−(60∘+x)​
Join 60∘−x−(60∘+x):−2x
60∘−x−(60∘+x)
Convert element to fraction: x=3x3​,(x+60∘)=3(60∘+x)3​=60∘−3x⋅3​−3(60∘+x)⋅3​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3180∘−x⋅3−(60∘+x)⋅3​
Expand 180∘−x⋅3−(60∘+x)⋅3:−6x
180∘−x⋅3−(60∘+x)⋅3
=180∘−3x−3(60∘+x)
Expand −3(60∘+x):−180∘−3x
−3(60∘+x)
Apply the distributive law: a(b+c)=ab+aca=−3,b=60∘,c=x=−3⋅60∘+(−3)x
Apply minus-plus rules+(−a)=−a=−3⋅60∘−3x
3⋅60∘=180∘
3⋅60∘
Multiply fractions: a⋅cb​=ca⋅b​=180∘
Cancel the common factor: 3=180∘
=−180∘−3x
=180∘−x⋅3−180∘−3x
Simplify 180∘−x⋅3−180∘−3x:−6x
180∘−x⋅3−180∘−3x
Group like terms=−3x−3x+180∘−180∘
Add similar elements: −3x−3x=−6x=−6x+180∘−180∘
Add similar elements: 180∘−180∘=0=−6x
=−6x
=3−6x​
Apply the fraction rule: b−a​=−ba​=−36x​
Divide the numbers: 36​=2=−2x
=2−2x​
Apply the fraction rule: b−a​=−ba​=−22x​
Divide the numbers: 22​=1=−x
=2sin(−x)cos(2x−x+60∘+60∘​)
260∘−x+60∘+x​=60∘
260∘−x+60∘+x​
Combine the fractions 60∘+60∘:120∘
Apply rule ca​±cb​=ca±b​=3180∘+180∘​
Add similar elements: 180∘+180∘=360∘=120∘
=2120∘−x+x​
Add similar elements: −x+x=0=2120∘​
Apply the fraction rule: acb​​=c⋅ab​=3⋅2360∘​
Multiply the numbers: 3⋅2=6=60∘
Cancel the common factor: 2=60∘
=2cos(60∘)sin(−x)
Simplify cos(60∘):21​
cos(60∘)
Use the following trivial identity:cos(60∘)=21​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=21​
=2⋅21​sin(−x)
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​sin(−x)
Cancel the common factor: 2=sin(−x)⋅1
Multiply: sin(−x)⋅1=sin(−x)=sin(−x)
=sin(−x)
sin(−x)=23​​
General solutions for sin(−x)=23​​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
−x=60∘+360∘n,−x=120∘+360∘n
−x=60∘+360∘n,−x=120∘+360∘n
Solve −x=60∘+360∘n:x=−60∘−360∘n
−x=60∘+360∘n
Divide both sides by −1
−x=60∘+360∘n
Divide both sides by −1−1−x​=−160∘​+−1360∘n​
Simplify
−1−x​=−160∘​+−1360∘n​
Simplify −1−x​:x
−1−x​
Apply the fraction rule: −b−a​=ba​=1x​
Apply rule 1a​=a=x
Simplify −160∘​+−1360∘n​:−60∘−360∘n
−160∘​+−1360∘n​
−160∘​=−60∘
−160∘​
Apply the fraction rule: −ba​=−ba​=−160∘​
Apply the fraction rule: 1a​=a160∘​=60∘=−60∘
=−60∘+−1360∘n​
−1360∘n​=−360∘n
−1360∘n​
Apply the fraction rule: −ba​=−ba​=−1360∘n​
Apply rule 1a​=a=−360∘n
=−60∘−360∘n
x=−60∘−360∘n
x=−60∘−360∘n
x=−60∘−360∘n
Solve −x=120∘+360∘n:x=−120∘−360∘n
−x=120∘+360∘n
Divide both sides by −1
−x=120∘+360∘n
Divide both sides by −1−1−x​=−1120∘​+−1360∘n​
Simplify
−1−x​=−1120∘​+−1360∘n​
Simplify −1−x​:x
−1−x​
Apply the fraction rule: −b−a​=ba​=1x​
Apply rule 1a​=a=x
Simplify −1120∘​+−1360∘n​:−120∘−360∘n
−1120∘​+−1360∘n​
−1120∘​=−120∘
−1120∘​
Apply the fraction rule: −ba​=−ba​=−1120∘​
Apply the fraction rule: 1a​=a1120∘​=120∘=−120∘
=−120∘+−1360∘n​
−1360∘n​=−360∘n
−1360∘n​
Apply the fraction rule: −ba​=−ba​=−1360∘n​
Apply rule 1a​=a=−360∘n
=−120∘−360∘n
x=−120∘−360∘n
x=−120∘−360∘n
x=−120∘−360∘n
x=−60∘−360∘n,x=−120∘−360∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(x/4)+sqrt(3)=0,0<= x<= 2picot^{(2)}(x)-csc(x)-1=04sin(x)+1=3csc(x)cos^2(x)-3sin(x)=0csc(t)= 1/(-(sqrt(2))/2)

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(60-x)-sin(60+x)=(sqrt(3))/2 ?

    The general solution for sin(60-x)-sin(60+x)=(sqrt(3))/2 is x=-60-360n,x=-120-360n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024