Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(sin(x)+cos(x))/(cos(x)+1)=tan(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)+1sin(x)+cos(x)​=tan(x)

Solution

x=0.66623…+2πn,x=π−0.66623…+2πn
+1
Degrees
x=38.17270…∘+360∘n,x=141.82729…∘+360∘n
Solution steps
cos(x)+1sin(x)+cos(x)​=tan(x)
Subtract tan(x) from both sidescos(x)+1sin(x)+cos(x)​−tan(x)=0
Simplify cos(x)+1sin(x)+cos(x)​−tan(x):cos(x)+1sin(x)+cos(x)−tan(x)(cos(x)+1)​
cos(x)+1sin(x)+cos(x)​−tan(x)
Convert element to fraction: tan(x)=cos(x)+1tan(x)(cos(x)+1)​=cos(x)+1sin(x)+cos(x)​−cos(x)+1tan(x)(cos(x)+1)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)+1sin(x)+cos(x)−tan(x)(cos(x)+1)​
cos(x)+1sin(x)+cos(x)−tan(x)(cos(x)+1)​=0
g(x)f(x)​=0⇒f(x)=0sin(x)+cos(x)−tan(x)(cos(x)+1)=0
Express with sin, cossin(x)+cos(x)−cos(x)sin(x)​(cos(x)+1)=0
Simplify sin(x)+cos(x)−cos(x)sin(x)​(cos(x)+1):cos(x)cos2(x)−sin(x)​
sin(x)+cos(x)−cos(x)sin(x)​(cos(x)+1)
Multiply cos(x)sin(x)​(cos(x)+1):cos(x)sin(x)(cos(x)+1)​
cos(x)sin(x)​(cos(x)+1)
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)(cos(x)+1)​
=sin(x)+cos(x)−cos(x)sin(x)(cos(x)+1)​
Convert element to fraction: sin(x)=cos(x)sin(x)cos(x)​,cos(x)=cos(x)cos(x)cos(x)​=cos(x)sin(x)cos(x)​+cos(x)cos(x)cos(x)​−cos(x)sin(x)(cos(x)+1)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)sin(x)cos(x)+cos(x)cos(x)−sin(x)(cos(x)+1)​
sin(x)cos(x)+cos(x)cos(x)−sin(x)(cos(x)+1)=sin(x)cos(x)+cos2(x)−sin(x)(cos(x)+1)
sin(x)cos(x)+cos(x)cos(x)−sin(x)(cos(x)+1)
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Add the numbers: 1+1=2=cos2(x)
=sin(x)cos(x)+cos2(x)−sin(x)(cos(x)+1)
=cos(x)sin(x)cos(x)+cos2(x)−sin(x)(cos(x)+1)​
Expand sin(x)cos(x)+cos2(x)−sin(x)(cos(x)+1):cos2(x)−sin(x)
sin(x)cos(x)+cos2(x)−sin(x)(cos(x)+1)
Expand −sin(x)(cos(x)+1):−sin(x)cos(x)−sin(x)
−sin(x)(cos(x)+1)
Apply the distributive law: a(b+c)=ab+aca=−sin(x),b=cos(x),c=1=−sin(x)cos(x)+(−sin(x))⋅1
Apply minus-plus rules+(−a)=−a=−sin(x)cos(x)−1⋅sin(x)
Multiply: 1⋅sin(x)=sin(x)=−sin(x)cos(x)−sin(x)
=sin(x)cos(x)+cos2(x)−sin(x)cos(x)−sin(x)
Add similar elements: sin(x)cos(x)−sin(x)cos(x)=0=cos2(x)−sin(x)
=cos(x)cos2(x)−sin(x)​
cos(x)cos2(x)−sin(x)​=0
g(x)f(x)​=0⇒f(x)=0cos2(x)−sin(x)=0
Add sin(x) to both sidescos2(x)=sin(x)
Square both sides(cos2(x))2=sin2(x)
Subtract sin2(x) from both sidescos4(x)−sin2(x)=0
Factor cos4(x)−sin2(x):(cos2(x)+sin(x))(cos2(x)−sin(x))
cos4(x)−sin2(x)
Apply exponent rule: abc=(ab)ccos4(x)=(cos2(x))2=(cos2(x))2−sin2(x)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(cos2(x))2−sin2(x)=(cos2(x)+sin(x))(cos2(x)−sin(x))=(cos2(x)+sin(x))(cos2(x)−sin(x))
(cos2(x)+sin(x))(cos2(x)−sin(x))=0
Solving each part separatelycos2(x)+sin(x)=0orcos2(x)−sin(x)=0
cos2(x)+sin(x)=0:x=arcsin(−2−1+5​​)+2πn,x=π+arcsin(2−1+5​​)+2πn
cos2(x)+sin(x)=0
Rewrite using trig identities
cos2(x)+sin(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=1−sin2(x)+sin(x)
1+sin(x)−sin2(x)=0
Solve by substitution
1+sin(x)−sin2(x)=0
Let: sin(x)=u1+u−u2=0
1+u−u2=0:u=−2−1+5​​,u=21+5​​
1+u−u2=0
Write in the standard form ax2+bx+c=0−u2+u+1=0
Solve with the quadratic formula
−u2+u+1=0
Quadratic Equation Formula:
For a=−1,b=1,c=1u1,2​=2(−1)−1±12−4(−1)⋅1​​
u1,2​=2(−1)−1±12−4(−1)⋅1​​
12−4(−1)⋅1​=5​
12−4(−1)⋅1​
Apply rule 1a=112=1=1−4(−1)⋅1​
Apply rule −(−a)=a=1+4⋅1⋅1​
Multiply the numbers: 4⋅1⋅1=4=1+4​
Add the numbers: 1+4=5=5​
u1,2​=2(−1)−1±5​​
Separate the solutionsu1​=2(−1)−1+5​​,u2​=2(−1)−1−5​​
u=2(−1)−1+5​​:−2−1+5​​
2(−1)−1+5​​
Remove parentheses: (−a)=−a=−2⋅1−1+5​​
Multiply the numbers: 2⋅1=2=−2−1+5​​
Apply the fraction rule: −ba​=−ba​=−2−1+5​​
u=2(−1)−1−5​​:21+5​​
2(−1)−1−5​​
Remove parentheses: (−a)=−a=−2⋅1−1−5​​
Multiply the numbers: 2⋅1=2=−2−1−5​​
Apply the fraction rule: −b−a​=ba​−1−5​=−(1+5​)=21+5​​
The solutions to the quadratic equation are:u=−2−1+5​​,u=21+5​​
Substitute back u=sin(x)sin(x)=−2−1+5​​,sin(x)=21+5​​
sin(x)=−2−1+5​​,sin(x)=21+5​​
sin(x)=−2−1+5​​:x=arcsin(−2−1+5​​)+2πn,x=π+arcsin(2−1+5​​)+2πn
sin(x)=−2−1+5​​
Apply trig inverse properties
sin(x)=−2−1+5​​
General solutions for sin(x)=−2−1+5​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(−2−1+5​​)+2πn,x=π+arcsin(2−1+5​​)+2πn
x=arcsin(−2−1+5​​)+2πn,x=π+arcsin(2−1+5​​)+2πn
sin(x)=21+5​​:No Solution
sin(x)=21+5​​
−1≤sin(x)≤1NoSolution
Combine all the solutionsx=arcsin(−2−1+5​​)+2πn,x=π+arcsin(2−1+5​​)+2πn
cos2(x)−sin(x)=0:x=arcsin(25​−1​)+2πn,x=π−arcsin(25​−1​)+2πn
cos2(x)−sin(x)=0
Rewrite using trig identities
cos2(x)−sin(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=1−sin2(x)−sin(x)
1−sin(x)−sin2(x)=0
Solve by substitution
1−sin(x)−sin2(x)=0
Let: sin(x)=u1−u−u2=0
1−u−u2=0:u=−21+5​​,u=25​−1​
1−u−u2=0
Write in the standard form ax2+bx+c=0−u2−u+1=0
Solve with the quadratic formula
−u2−u+1=0
Quadratic Equation Formula:
For a=−1,b=−1,c=1u1,2​=2(−1)−(−1)±(−1)2−4(−1)⋅1​​
u1,2​=2(−1)−(−1)±(−1)2−4(−1)⋅1​​
(−1)2−4(−1)⋅1​=5​
(−1)2−4(−1)⋅1​
Apply rule −(−a)=a=(−1)2+4⋅1⋅1​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅1⋅1=4
4⋅1⋅1
Multiply the numbers: 4⋅1⋅1=4=4
=1+4​
Add the numbers: 1+4=5=5​
u1,2​=2(−1)−(−1)±5​​
Separate the solutionsu1​=2(−1)−(−1)+5​​,u2​=2(−1)−(−1)−5​​
u=2(−1)−(−1)+5​​:−21+5​​
2(−1)−(−1)+5​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅11+5​​
Multiply the numbers: 2⋅1=2=−21+5​​
Apply the fraction rule: −ba​=−ba​=−21+5​​
u=2(−1)−(−1)−5​​:25​−1​
2(−1)−(−1)−5​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅11−5​​
Multiply the numbers: 2⋅1=2=−21−5​​
Apply the fraction rule: −b−a​=ba​1−5​=−(5​−1)=25​−1​
The solutions to the quadratic equation are:u=−21+5​​,u=25​−1​
Substitute back u=sin(x)sin(x)=−21+5​​,sin(x)=25​−1​
sin(x)=−21+5​​,sin(x)=25​−1​
sin(x)=−21+5​​:No Solution
sin(x)=−21+5​​
−1≤sin(x)≤1NoSolution
sin(x)=25​−1​:x=arcsin(25​−1​)+2πn,x=π−arcsin(25​−1​)+2πn
sin(x)=25​−1​
Apply trig inverse properties
sin(x)=25​−1​
General solutions for sin(x)=25​−1​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(25​−1​)+2πn,x=π−arcsin(25​−1​)+2πn
x=arcsin(25​−1​)+2πn,x=π−arcsin(25​−1​)+2πn
Combine all the solutionsx=arcsin(25​−1​)+2πn,x=π−arcsin(25​−1​)+2πn
Combine all the solutionsx=arcsin(−2−1+5​​)+2πn,x=π+arcsin(2−1+5​​)+2πn,x=arcsin(25​−1​)+2πn,x=π−arcsin(25​−1​)+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into cos(x)+1sin(x)+cos(x)​=tan(x)
Remove the ones that don't agree with the equation.
Check the solution arcsin(−2−1+5​​)+2πn:False
arcsin(−2−1+5​​)+2πn
Plug in n=1arcsin(−2−1+5​​)+2π1
For cos(x)+1sin(x)+cos(x)​=tan(x)plug inx=arcsin(−2−1+5​​)+2π1cos(arcsin(−2−1+5​​)+2π1)+1sin(arcsin(−2−1+5​​)+2π1)+cos(arcsin(−2−1+5​​)+2π1)​=tan(arcsin(−2−1+5​​)+2π1)
Refine0.09412…=−0.78615…
⇒False
Check the solution π+arcsin(2−1+5​​)+2πn:False
π+arcsin(2−1+5​​)+2πn
Plug in n=1π+arcsin(2−1+5​​)+2π1
For cos(x)+1sin(x)+cos(x)​=tan(x)plug inx=π+arcsin(2−1+5​​)+2π1cos(π+arcsin(2−1+5​​)+2π1)+1sin(π+arcsin(2−1+5​​)+2π1)+cos(π+arcsin(2−1+5​​)+2π1)​=tan(π+arcsin(2−1+5​​)+2π1)
Refine−6.56625…=0.78615…
⇒False
Check the solution arcsin(25​−1​)+2πn:True
arcsin(25​−1​)+2πn
Plug in n=1arcsin(25​−1​)+2π1
For cos(x)+1sin(x)+cos(x)​=tan(x)plug inx=arcsin(25​−1​)+2π1cos(arcsin(25​−1​)+2π1)+1sin(arcsin(25​−1​)+2π1)+cos(arcsin(25​−1​)+2π1)​=tan(arcsin(25​−1​)+2π1)
Refine0.78615…=0.78615…
⇒True
Check the solution π−arcsin(25​−1​)+2πn:True
π−arcsin(25​−1​)+2πn
Plug in n=1π−arcsin(25​−1​)+2π1
For cos(x)+1sin(x)+cos(x)​=tan(x)plug inx=π−arcsin(25​−1​)+2π1cos(π−arcsin(25​−1​)+2π1)+1sin(π−arcsin(25​−1​)+2π1)+cos(π−arcsin(25​−1​)+2π1)​=tan(π−arcsin(25​−1​)+2π1)
Refine−0.78615…=−0.78615…
⇒True
x=arcsin(25​−1​)+2πn,x=π−arcsin(25​−1​)+2πn
Show solutions in decimal formx=0.66623…+2πn,x=π−0.66623…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(x)-cos(2x)=1tan(θ)= 1/(sqrt(2))-cos(x)-sin(x)=1sin(2x)=sin(0.5x)2sin(2x+15)= 1/2

Frequently Asked Questions (FAQ)

  • What is the general solution for (sin(x)+cos(x))/(cos(x)+1)=tan(x) ?

    The general solution for (sin(x)+cos(x))/(cos(x)+1)=tan(x) is x=0.66623…+2pin,x=pi-0.66623…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024