Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4sin^2(2θ)+6=9

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4sin2(2θ)+6=9

Solution

θ=6π​+πn,θ=3π​+πn,θ=32π​+πn,θ=65π​+πn
+1
Degrees
θ=30∘+180∘n,θ=60∘+180∘n,θ=120∘+180∘n,θ=150∘+180∘n
Solution steps
4sin2(2θ)+6=9
Solve by substitution
4sin2(2θ)+6=9
Let: sin(2θ)=u4u2+6=9
4u2+6=9:u=23​​,u=−23​​
4u2+6=9
Move 6to the right side
4u2+6=9
Subtract 6 from both sides4u2+6−6=9−6
Simplify4u2=3
4u2=3
Divide both sides by 4
4u2=3
Divide both sides by 444u2​=43​
Simplifyu2=43​
u2=43​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=43​​,u=−43​​
43​​=23​​
43​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: nan​=a22​=2=2
=23​​
−43​​=−23​​
−43​​
Simplify 43​​:23​​
43​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: nan​=a22​=2=2
=23​​
=−23​​
u=23​​,u=−23​​
Substitute back u=sin(2θ)sin(2θ)=23​​,sin(2θ)=−23​​
sin(2θ)=23​​,sin(2θ)=−23​​
sin(2θ)=23​​:θ=6π​+πn,θ=3π​+πn
sin(2θ)=23​​
General solutions for sin(2θ)=23​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2θ=3π​+2πn,2θ=32π​+2πn
2θ=3π​+2πn,2θ=32π​+2πn
Solve 2θ=3π​+2πn:θ=6π​+πn
2θ=3π​+2πn
Divide both sides by 2
2θ=3π​+2πn
Divide both sides by 222θ​=23π​​+22πn​
Simplify
22θ​=23π​​+22πn​
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 23π​​+22πn​:6π​+πn
23π​​+22πn​
23π​​=6π​
23π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅2π​
Multiply the numbers: 3⋅2=6=6π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=6π​+πn
θ=6π​+πn
θ=6π​+πn
θ=6π​+πn
Solve 2θ=32π​+2πn:θ=3π​+πn
2θ=32π​+2πn
Divide both sides by 2
2θ=32π​+2πn
Divide both sides by 222θ​=232π​​+22πn​
Simplify
22θ​=232π​​+22πn​
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 232π​​+22πn​:3π​+πn
232π​​+22πn​
232π​​=3π​
232π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅22π​
Multiply the numbers: 3⋅2=6=62π​
Cancel the common factor: 2=3π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=3π​+πn
θ=3π​+πn
θ=3π​+πn
θ=3π​+πn
θ=6π​+πn,θ=3π​+πn
sin(2θ)=−23​​:θ=32π​+πn,θ=65π​+πn
sin(2θ)=−23​​
General solutions for sin(2θ)=−23​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2θ=34π​+2πn,2θ=35π​+2πn
2θ=34π​+2πn,2θ=35π​+2πn
Solve 2θ=34π​+2πn:θ=32π​+πn
2θ=34π​+2πn
Divide both sides by 2
2θ=34π​+2πn
Divide both sides by 222θ​=234π​​+22πn​
Simplify
22θ​=234π​​+22πn​
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 234π​​+22πn​:32π​+πn
234π​​+22πn​
234π​​=32π​
234π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅24π​
Multiply the numbers: 3⋅2=6=64π​
Cancel the common factor: 2=32π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=32π​+πn
θ=32π​+πn
θ=32π​+πn
θ=32π​+πn
Solve 2θ=35π​+2πn:θ=65π​+πn
2θ=35π​+2πn
Divide both sides by 2
2θ=35π​+2πn
Divide both sides by 222θ​=235π​​+22πn​
Simplify
22θ​=235π​​+22πn​
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 235π​​+22πn​:65π​+πn
235π​​+22πn​
235π​​=65π​
235π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅25π​
Multiply the numbers: 3⋅2=6=65π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=65π​+πn
θ=65π​+πn
θ=65π​+πn
θ=65π​+πn
θ=32π​+πn,θ=65π​+πn
Combine all the solutionsθ=6π​+πn,θ=3π​+πn,θ=32π​+πn,θ=65π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(a)= 1/(sqrt(3))tan(x)=0.649(sin(x)+cos(x))/(cos(x)+1)=tan(x)cos(x)-cos(2x)=1tan(θ)= 1/(sqrt(2))

Frequently Asked Questions (FAQ)

  • What is the general solution for 4sin^2(2θ)+6=9 ?

    The general solution for 4sin^2(2θ)+6=9 is θ= pi/6+pin,θ= pi/3+pin,θ=(2pi)/3+pin,θ=(5pi)/6+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024