Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan((8x+1)/5)*cot((x+7)/2)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(58x+1∘​)⋅cot(2x+7∘​)=1

Solution

x=113600∘n​+3∘,x=166.63636…∘+113600∘n​
+1
Radians
x=60π​+1120π​n,x=660611π​+1120π​n
Solution steps
tan(58x+1∘​)cot(2x+7∘​)=1
Subtract 1 from both sidestan(9001440x+180∘​)cot(360180x+1260∘​)−1=0
Express with sin, cos
−1+cot(360180x+1260∘​)tan(900180∘+1440x​)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=−1+sin(360180x+1260∘​)cos(360180x+1260∘​)​tan(900180∘+1440x​)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−1+sin(360180x+1260∘​)cos(360180x+1260∘​)​⋅cos(900180∘+1440x​)sin(900180∘+1440x​)​
Simplify −1+sin(360180x+1260∘​)cos(360180x+1260∘​)​⋅cos(900180∘+1440x​)sin(900180∘+1440x​)​:sin(360180x+1260∘​)cos(900180∘+1440x​)−sin(360180x+1260∘​)cos(900180∘+1440x​)+cos(360180x+1260∘​)sin(900180∘+1440x​)​
−1+sin(360180x+1260∘​)cos(360180x+1260∘​)​⋅cos(900180∘+1440x​)sin(900180∘+1440x​)​
Multiply sin(360180x+1260∘​)cos(360180x+1260∘​)​⋅cos(900180∘+1440x​)sin(900180∘+1440x​)​:sin(360180x+1260∘​)cos(9001440x+180∘​)cos(360180x+1260∘​)sin(9001440x+180∘​)​
sin(360180x+1260∘​)cos(360180x+1260∘​)​⋅cos(900180∘+1440x​)sin(900180∘+1440x​)​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=sin(360180x+1260∘​)cos(900180∘+1440x​)cos(360180x+1260∘​)sin(900180∘+1440x​)​
=−1+sin(360180x+1260∘​)cos(9001440x+180∘​)cos(360180x+1260∘​)sin(9001440x+180∘​)​
Convert element to fraction: 1=sin(360180x+1260∘​)cos(900180∘+1440x​)1sin(360180x+1260∘​)cos(900180∘+1440x​)​=−sin(360180x+1260∘​)cos(900180∘+1440x​)1⋅sin(360180x+1260∘​)cos(900180∘+1440x​)​+sin(360180x+1260∘​)cos(900180∘+1440x​)cos(360180x+1260∘​)sin(900180∘+1440x​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(360180x+1260∘​)cos(900180∘+1440x​)−1⋅sin(360180x+1260∘​)cos(900180∘+1440x​)+cos(360180x+1260∘​)sin(900180∘+1440x​)​
Multiply: 1⋅sin(360180x+1260∘​)=sin(360180x+1260∘​)=sin(360180x+1260∘​)cos(9001440x+180∘​)−sin(360180x+1260∘​)cos(9001440x+180∘​)+cos(360180x+1260∘​)sin(9001440x+180∘​)​
=sin(360180x+1260∘​)cos(900180∘+1440x​)−sin(360180x+1260∘​)cos(900180∘+1440x​)+cos(360180x+1260∘​)sin(900180∘+1440x​)​
cos(900180∘+1440x​)sin(360180x+1260∘​)cos(360180x+1260∘​)sin(900180∘+1440x​)−cos(900180∘+1440x​)sin(360180x+1260∘​)​=0
g(x)f(x)​=0⇒f(x)=0cos(360180x+1260∘​)sin(900180∘+1440x​)−cos(900180∘+1440x​)sin(360180x+1260∘​)=0
Rewrite using trig identities
cos(360180x+1260∘​)sin(900180∘+1440x​)−cos(900180∘+1440x​)sin(360180x+1260∘​)
Use the Angle Difference identity: sin(s)cos(t)−cos(s)sin(t)=sin(s−t)=sin(900180∘+1440x​−360180x+1260∘​)
sin(900180∘+1440x​−360180x+1260∘​)=0
General solutions for sin(900180∘+1440x​−360180x+1260∘​)=0
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
900180∘+1440x​−360180x+1260∘​=0+360∘n,900180∘+1440x​−360180x+1260∘​=180∘+360∘n
900180∘+1440x​−360180x+1260∘​=0+360∘n,900180∘+1440x​−360180x+1260∘​=180∘+360∘n
Solve 900180∘+1440x​−360180x+1260∘​=0+360∘n:x=113600∘n​+3∘
900180∘+1440x​−360180x+1260∘​=0+360∘n
0+360∘n=360∘n900180∘+1440x​−360180x+1260∘​=360∘n
Multiply by LCM
900180∘+1440x​−360180x+1260∘​=360∘n
Find Least Common Multiplier of 900,360:1800
900,360
Least Common Multiplier (LCM)
Prime factorization of 900:2⋅2⋅3⋅3⋅5⋅5
900
900divides by 2900=450⋅2=2⋅450
450divides by 2450=225⋅2=2⋅2⋅225
225divides by 3225=75⋅3=2⋅2⋅3⋅75
75divides by 375=25⋅3=2⋅2⋅3⋅3⋅25
25divides by 525=5⋅5=2⋅2⋅3⋅3⋅5⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3⋅3⋅5⋅5
Prime factorization of 360:2⋅2⋅2⋅3⋅3⋅5
360
360divides by 2360=180⋅2=2⋅180
180divides by 2180=90⋅2=2⋅2⋅90
90divides by 290=45⋅2=2⋅2⋅2⋅45
45divides by 345=15⋅3=2⋅2⋅2⋅3⋅15
15divides by 315=5⋅3=2⋅2⋅2⋅3⋅3⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅3⋅3⋅5
Multiply each factor the greatest number of times it occurs in either 900 or 360=2⋅2⋅2⋅3⋅3⋅5⋅5
Multiply the numbers: 2⋅2⋅2⋅3⋅3⋅5⋅5=1800=1800
Multiply by LCM=1800900180∘+1440x​⋅1800−360180x+1260∘​⋅1800=360∘n⋅1800
Simplify
900180∘+1440x​⋅1800−360180x+1260∘​⋅1800=360∘n⋅1800
Simplify 900180∘+1440x​⋅1800:2(1440x+180∘)
900180∘+1440x​⋅1800
Multiply fractions: a⋅cb​=ca⋅b​=900(180∘+1440x)⋅1800​
Divide the numbers: 9001800​=2=2(1440x+180∘)
Simplify −360180x+1260∘​⋅1800:−5(180x+1260∘)
−360180x+1260∘​⋅1800
Multiply fractions: a⋅cb​=ca⋅b​=−360(180x+1260∘)⋅1800​
Divide the numbers: 3601800​=5=−5(180x+1260∘)
Simplify 360∘n⋅1800:648000∘n
360∘n⋅1800
Multiply the numbers: 2⋅1800=3600=648000∘n
2(1440x+180∘)−5(180x+1260∘)=648000∘n
2(1440x+180∘)−5(180x+1260∘)=648000∘n
2(1440x+180∘)−5(180x+1260∘)=648000∘n
Expand 2(1440x+180∘)−5(180x+1260∘):1980x−5940∘
2(1440x+180∘)−5(180x+1260∘)
Expand 2(1440x+180∘):2880x+360∘
2(1440x+180∘)
Apply the distributive law: a(b+c)=ab+aca=2,b=1440x,c=180∘=2⋅1440x+360∘
Multiply the numbers: 2⋅1440=2880=2880x+360∘
=2880x+360∘−5(180x+1260∘)
Expand −5(180x+1260∘):−900x−6300∘
−5(180x+1260∘)
Apply the distributive law: a(b+c)=ab+aca=−5,b=180x,c=1260∘=−5⋅180x+(−5)⋅1260∘
Apply minus-plus rules+(−a)=−a=−5⋅180x−5⋅1260∘
Simplify −5⋅180x−5⋅1260∘:−900x−6300∘
−5⋅180x−5⋅1260∘
Multiply the numbers: 5⋅180=900=−900x−5⋅1260∘
Multiply the numbers: 5⋅7=35=−900x−6300∘
=−900x−6300∘
=2880x+360∘−900x−6300∘
Simplify 2880x+360∘−900x−6300∘:1980x−5940∘
2880x+360∘−900x−6300∘
Group like terms=2880x−900x+360∘−6300∘
Add similar elements: 2880x−900x=1980x=1980x+360∘−6300∘
Add similar elements: 360∘−6300∘=−5940∘=1980x−5940∘
=1980x−5940∘
1980x−5940∘=648000∘n
Move 5940∘to the right side
1980x−5940∘=648000∘n
Add 5940∘ to both sides1980x−5940∘+5940∘=648000∘n+5940∘
Simplify1980x=648000∘n+5940∘
1980x=648000∘n+5940∘
Divide both sides by 1980
1980x=648000∘n+5940∘
Divide both sides by 198019801980x​=1980648000∘n​+3∘
Simplify
19801980x​=1980648000∘n​+3∘
Simplify 19801980x​:x
19801980x​
Divide the numbers: 19801980​=1=x
Simplify 1980648000∘n​+3∘:113600∘n​+3∘
1980648000∘n​+3∘
Cancel 1980648000∘n​:113600∘n​
1980648000∘n​
Cancel the common factor: 180=113600∘n​
=113600∘n​+3∘
Cancel 3∘:3∘
3∘
Cancel the common factor: 33=3∘
=113600∘n​+3∘
x=113600∘n​+3∘
x=113600∘n​+3∘
x=113600∘n​+3∘
Solve 900180∘+1440x​−360180x+1260∘​=180∘+360∘n:x=166.63636…∘+113600∘n​
900180∘+1440x​−360180x+1260∘​=180∘+360∘n
Multiply by LCM
900180∘+1440x​−360180x+1260∘​=180∘+360∘n
Find Least Common Multiplier of 900,360:1800
900,360
Least Common Multiplier (LCM)
Prime factorization of 900:2⋅2⋅3⋅3⋅5⋅5
900
900divides by 2900=450⋅2=2⋅450
450divides by 2450=225⋅2=2⋅2⋅225
225divides by 3225=75⋅3=2⋅2⋅3⋅75
75divides by 375=25⋅3=2⋅2⋅3⋅3⋅25
25divides by 525=5⋅5=2⋅2⋅3⋅3⋅5⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3⋅3⋅5⋅5
Prime factorization of 360:2⋅2⋅2⋅3⋅3⋅5
360
360divides by 2360=180⋅2=2⋅180
180divides by 2180=90⋅2=2⋅2⋅90
90divides by 290=45⋅2=2⋅2⋅2⋅45
45divides by 345=15⋅3=2⋅2⋅2⋅3⋅15
15divides by 315=5⋅3=2⋅2⋅2⋅3⋅3⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅3⋅3⋅5
Multiply each factor the greatest number of times it occurs in either 900 or 360=2⋅2⋅2⋅3⋅3⋅5⋅5
Multiply the numbers: 2⋅2⋅2⋅3⋅3⋅5⋅5=1800=1800
Multiply by LCM=1800900180∘+1440x​⋅1800−360180x+1260∘​⋅1800=180∘1800+360∘n⋅1800
Simplify
900180∘+1440x​⋅1800−360180x+1260∘​⋅1800=180∘1800+360∘n⋅1800
Simplify 900180∘+1440x​⋅1800:2(1440x+180∘)
900180∘+1440x​⋅1800
Multiply fractions: a⋅cb​=ca⋅b​=900(180∘+1440x)⋅1800​
Divide the numbers: 9001800​=2=2(1440x+180∘)
Simplify −360180x+1260∘​⋅1800:−5(180x+1260∘)
−360180x+1260∘​⋅1800
Multiply fractions: a⋅cb​=ca⋅b​=−360(180x+1260∘)⋅1800​
Divide the numbers: 3601800​=5=−5(180x+1260∘)
Simplify 180∘1800:324000∘
180∘1800
Apply the commutative law: 180∘1800=324000∘324000∘
Simplify 360∘n⋅1800:648000∘n
360∘n⋅1800
Multiply the numbers: 2⋅1800=3600=648000∘n
2(1440x+180∘)−5(180x+1260∘)=324000∘+648000∘n
2(1440x+180∘)−5(180x+1260∘)=324000∘+648000∘n
2(1440x+180∘)−5(180x+1260∘)=324000∘+648000∘n
Expand 2(1440x+180∘)−5(180x+1260∘):1980x−5940∘
2(1440x+180∘)−5(180x+1260∘)
Expand 2(1440x+180∘):2880x+360∘
2(1440x+180∘)
Apply the distributive law: a(b+c)=ab+aca=2,b=1440x,c=180∘=2⋅1440x+360∘
Multiply the numbers: 2⋅1440=2880=2880x+360∘
=2880x+360∘−5(180x+1260∘)
Expand −5(180x+1260∘):−900x−6300∘
−5(180x+1260∘)
Apply the distributive law: a(b+c)=ab+aca=−5,b=180x,c=1260∘=−5⋅180x+(−5)⋅1260∘
Apply minus-plus rules+(−a)=−a=−5⋅180x−5⋅1260∘
Simplify −5⋅180x−5⋅1260∘:−900x−6300∘
−5⋅180x−5⋅1260∘
Multiply the numbers: 5⋅180=900=−900x−5⋅1260∘
Multiply the numbers: 5⋅7=35=−900x−6300∘
=−900x−6300∘
=2880x+360∘−900x−6300∘
Simplify 2880x+360∘−900x−6300∘:1980x−5940∘
2880x+360∘−900x−6300∘
Group like terms=2880x−900x+360∘−6300∘
Add similar elements: 2880x−900x=1980x=1980x+360∘−6300∘
Add similar elements: 360∘−6300∘=−5940∘=1980x−5940∘
=1980x−5940∘
1980x−5940∘=324000∘+648000∘n
Move 5940∘to the right side
1980x−5940∘=324000∘+648000∘n
Add 5940∘ to both sides1980x−5940∘+5940∘=324000∘+648000∘n+5940∘
Simplify1980x=329940∘+648000∘n
1980x=329940∘+648000∘n
Divide both sides by 1980
1980x=329940∘+648000∘n
Divide both sides by 198019801980x​=166.63636…∘+1980648000∘n​
Simplify
19801980x​=166.63636…∘+1980648000∘n​
Simplify 19801980x​:x
19801980x​
Divide the numbers: 19801980​=1=x
Simplify 166.63636…∘+1980648000∘n​:166.63636…∘+113600∘n​
166.63636…∘+1980648000∘n​
Cancel 166.63636…∘:166.63636…∘
166.63636…∘
Cancel the common factor: 3=166.63636…∘
=166.63636…∘+1980648000∘n​
Cancel 1980648000∘n​:113600∘n​
1980648000∘n​
Cancel the common factor: 180=113600∘n​
=166.63636…∘+113600∘n​
x=166.63636…∘+113600∘n​
x=166.63636…∘+113600∘n​
x=166.63636…∘+113600∘n​
x=113600∘n​+3∘,x=166.63636…∘+113600∘n​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(4t)cos(t)=sin(t)cos(4t)sqrt(3)tan(3x+pi/2)+1=0-2sin(x)-2cos(x)=07sin(b)=5sin(70)5sin(x)+2cos^2(x)=4

Frequently Asked Questions (FAQ)

  • What is the general solution for tan((8x+1)/5)*cot((x+7)/2)=1 ?

    The general solution for tan((8x+1)/5)*cot((x+7)/2)=1 is x=(3600n)/(11)+3,x=166.63636…+(3600n)/(11)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024