Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2cos(2θ+10)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2cos(2θ+10∘)=1

Solution

θ=180∘n+25∘,θ=180∘n+145∘
+1
Radians
θ=365π​+πn,θ=3629π​+πn
Solution steps
2cos(2θ+10∘)=1
Divide both sides by 2
2cos(2θ+10∘)=1
Divide both sides by 222cos(2θ+10∘)​=21​
Simplifycos(2θ+10∘)=21​
cos(2θ+10∘)=21​
General solutions for cos(2θ+10∘)=21​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
2θ+10∘=60∘+360∘n,2θ+10∘=300∘+360∘n
2θ+10∘=60∘+360∘n,2θ+10∘=300∘+360∘n
Solve 2θ+10∘=60∘+360∘n:θ=180∘n+25∘
2θ+10∘=60∘+360∘n
Move 10∘to the right side
2θ+10∘=60∘+360∘n
Subtract 10∘ from both sides2θ+10∘−10∘=60∘+360∘n−10∘
Simplify
2θ+10∘−10∘=60∘+360∘n−10∘
Simplify 2θ+10∘−10∘:2θ
2θ+10∘−10∘
Add similar elements: 10∘−10∘=0
=2θ
Simplify 60∘+360∘n−10∘:360∘n+50∘
60∘+360∘n−10∘
Group like terms=360∘n+60∘−10∘
Least Common Multiplier of 3,18:18
3,18
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 18:2⋅3⋅3
18
18divides by 218=9⋅2=2⋅9
9divides by 39=3⋅3=2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3⋅3
Multiply each factor the greatest number of times it occurs in either 3 or 18=3⋅3⋅2
Multiply the numbers: 3⋅3⋅2=18=18
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 18
For 60∘:multiply the denominator and numerator by 660∘=3⋅6180∘6​=60∘
=60∘−10∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=18180∘6−180∘​
Add similar elements: 1080∘−180∘=900∘=360∘n+50∘
2θ=360∘n+50∘
2θ=360∘n+50∘
2θ=360∘n+50∘
Divide both sides by 2
2θ=360∘n+50∘
Divide both sides by 222θ​=2360∘n​+250∘​
Simplify
22θ​=2360∘n​+250∘​
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 2360∘n​+250∘​:180∘n+25∘
2360∘n​+250∘​
2360∘n​=180∘n
2360∘n​
Divide the numbers: 22​=1=180∘n
250∘​=25∘
250∘​
Apply the fraction rule: acb​​=c⋅ab​=18⋅2900∘​
Multiply the numbers: 18⋅2=36=25∘
=180∘n+25∘
θ=180∘n+25∘
θ=180∘n+25∘
θ=180∘n+25∘
Solve 2θ+10∘=300∘+360∘n:θ=180∘n+145∘
2θ+10∘=300∘+360∘n
Move 10∘to the right side
2θ+10∘=300∘+360∘n
Subtract 10∘ from both sides2θ+10∘−10∘=300∘+360∘n−10∘
Simplify
2θ+10∘−10∘=300∘+360∘n−10∘
Simplify 2θ+10∘−10∘:2θ
2θ+10∘−10∘
Add similar elements: 10∘−10∘=0
=2θ
Simplify 300∘+360∘n−10∘:360∘n+290∘
300∘+360∘n−10∘
Group like terms=360∘n+300∘−10∘
Least Common Multiplier of 3,18:18
3,18
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 18:2⋅3⋅3
18
18divides by 218=9⋅2=2⋅9
9divides by 39=3⋅3=2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3⋅3
Multiply each factor the greatest number of times it occurs in either 3 or 18=3⋅3⋅2
Multiply the numbers: 3⋅3⋅2=18=18
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 18
For 300∘:multiply the denominator and numerator by 6300∘=3⋅6900∘6​=300∘
=300∘−10∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=185400∘−180∘​
Add similar elements: 5400∘−180∘=5220∘=360∘n+290∘
2θ=360∘n+290∘
2θ=360∘n+290∘
2θ=360∘n+290∘
Divide both sides by 2
2θ=360∘n+290∘
Divide both sides by 222θ​=2360∘n​+2290∘​
Simplify
22θ​=2360∘n​+2290∘​
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 2360∘n​+2290∘​:180∘n+145∘
2360∘n​+2290∘​
2360∘n​=180∘n
2360∘n​
Divide the numbers: 22​=1=180∘n
2290∘​=145∘
2290∘​
Apply the fraction rule: acb​​=c⋅ab​=18⋅25220∘​
Multiply the numbers: 18⋅2=36=145∘
=180∘n+145∘
θ=180∘n+145∘
θ=180∘n+145∘
θ=180∘n+145∘
θ=180∘n+25∘,θ=180∘n+145∘

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cot(β)=(-sqrt(3))/32sin^2(3x)-3cos(3x)+1=0sin(θ)= 15/233sin^2(x)+6sin(x)-11=7sin(x)-9sin^2(a)=2sin(a)

Frequently Asked Questions (FAQ)

  • What is the general solution for 2cos(2θ+10)=1 ?

    The general solution for 2cos(2θ+10)=1 is θ=180n+25,θ=180n+145
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024