Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor a,-10=sin(a)+15.2cos(a)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solvefor

Solution

a=2.35262…+2πn,a=−2.22123…+2πn
+1
Degrees
a=134.79566…∘+360∘n,a=−127.26759…∘+360∘n
Solution steps
−10=sin(a)+15.2cos(a)
Subtract 15.2cos(a) from both sidessin(a)=−10−15.2cos(a)
Square both sidessin2(a)=(−10−15.2cos(a))2
Subtract (−10−15.2cos(a))2 from both sidessin2(a)−100−304cos(a)−231.04cos2(a)=0
Rewrite using trig identities
−100+sin2(a)−231.04cos2(a)−304cos(a)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−100+1−cos2(a)−231.04cos2(a)−304cos(a)
Simplify −100+1−cos2(a)−231.04cos2(a)−304cos(a):−232.04cos2(a)−304cos(a)−99
−100+1−cos2(a)−231.04cos2(a)−304cos(a)
Add similar elements: −cos2(a)−231.04cos2(a)=−232.04cos2(a)=−100+1−232.04cos2(a)−304cos(a)
Add/Subtract the numbers: −100+1=−99=−232.04cos2(a)−304cos(a)−99
=−232.04cos2(a)−304cos(a)−99
−99−232.04cos2(a)−304cos(a)=0
Solve by substitution
−99−232.04cos2(a)−304cos(a)=0
Let: cos(a)=u−99−232.04u2−304u=0
−99−232.04u2−304u=0:u=−58015(760+3301​)​,u=−58015(760−3301​)​
−99−232.04u2−304u=0
Multiply both sides by 100
−99−232.04u2−304u=0
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere are 2digits to the right of the decimal point, therefore multiply by 100−99⋅100−232.04u2⋅100−304u⋅100=0⋅100
Refine−9900−23204u2−30400u=0
−9900−23204u2−30400u=0
Write in the standard form ax2+bx+c=0−23204u2−30400u−9900=0
Solve with the quadratic formula
−23204u2−30400u−9900=0
Quadratic Equation Formula:
For a=−23204,b=−30400,c=−9900u1,2​=2(−23204)−(−30400)±(−30400)2−4(−23204)(−9900)​​
u1,2​=2(−23204)−(−30400)±(−30400)2−4(−23204)(−9900)​​
(−30400)2−4(−23204)(−9900)​=403301​
(−30400)2−4(−23204)(−9900)​
Apply rule −(−a)=a=(−30400)2−4⋅23204⋅9900​
Apply exponent rule: (−a)n=an,if n is even(−30400)2=304002=304002−4⋅23204⋅9900​
Multiply the numbers: 4⋅23204⋅9900=918878400=304002−918878400​
304002=924160000=924160000−918878400​
Subtract the numbers: 924160000−918878400=5281600=5281600​
Prime factorization of 5281600:26⋅52⋅3301
5281600
=26⋅52⋅3301​
Apply radical rule: =3301​26​52​
Apply radical rule: 26​=226​=23=233301​52​
Apply radical rule: 52​=5=23⋅53301​
Refine=403301​
u1,2​=2(−23204)−(−30400)±403301​​
Separate the solutionsu1​=2(−23204)−(−30400)+403301​​,u2​=2(−23204)−(−30400)−403301​​
u=2(−23204)−(−30400)+403301​​:−58015(760+3301​)​
2(−23204)−(−30400)+403301​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅2320430400+403301​​
Multiply the numbers: 2⋅23204=46408=−4640830400+403301​​
Apply the fraction rule: −ba​=−ba​=−4640830400+403301​​
Cancel 4640830400+403301​​:58015(760+3301​)​
4640830400+403301​​
Factor 30400+403301​:40(760+3301​)
30400+403301​
Rewrite as=40⋅760+403301​
Factor out common term 40=40(760+3301​)
=4640840(760+3301​)​
Cancel the common factor: 8=58015(760+3301​)​
=−58015(760+3301​)​
u=2(−23204)−(−30400)−403301​​:−58015(760−3301​)​
2(−23204)−(−30400)−403301​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅2320430400−403301​​
Multiply the numbers: 2⋅23204=46408=−4640830400−403301​​
Apply the fraction rule: −ba​=−ba​=−4640830400−403301​​
Cancel 4640830400−403301​​:58015(760−3301​)​
4640830400−403301​​
Factor 30400−403301​:40(760−3301​)
30400−403301​
Rewrite as=40⋅760−403301​
Factor out common term 40=40(760−3301​)
=4640840(760−3301​)​
Cancel the common factor: 8=58015(760−3301​)​
=−58015(760−3301​)​
The solutions to the quadratic equation are:u=−58015(760+3301​)​,u=−58015(760−3301​)​
Substitute back u=cos(a)cos(a)=−58015(760+3301​)​,cos(a)=−58015(760−3301​)​
cos(a)=−58015(760+3301​)​,cos(a)=−58015(760−3301​)​
cos(a)=−58015(760+3301​)​:a=arccos(−58015(760+3301​)​)+2πn,a=−arccos(−58015(760+3301​)​)+2πn
cos(a)=−58015(760+3301​)​
Apply trig inverse properties
cos(a)=−58015(760+3301​)​
General solutions for cos(a)=−58015(760+3301​)​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πna=arccos(−58015(760+3301​)​)+2πn,a=−arccos(−58015(760+3301​)​)+2πn
a=arccos(−58015(760+3301​)​)+2πn,a=−arccos(−58015(760+3301​)​)+2πn
cos(a)=−58015(760−3301​)​:a=arccos(−58015(760−3301​)​)+2πn,a=−arccos(−58015(760−3301​)​)+2πn
cos(a)=−58015(760−3301​)​
Apply trig inverse properties
cos(a)=−58015(760−3301​)​
General solutions for cos(a)=−58015(760−3301​)​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πna=arccos(−58015(760−3301​)​)+2πn,a=−arccos(−58015(760−3301​)​)+2πn
a=arccos(−58015(760−3301​)​)+2πn,a=−arccos(−58015(760−3301​)​)+2πn
Combine all the solutionsa=arccos(−58015(760+3301​)​)+2πn,a=−arccos(−58015(760+3301​)​)+2πn,a=arccos(−58015(760−3301​)​)+2πn,a=−arccos(−58015(760−3301​)​)+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into sin(a)+15.2cos(a)=−10
Remove the ones that don't agree with the equation.
Check the solution arccos(−58015(760+3301​)​)+2πn:True
arccos(−58015(760+3301​)​)+2πn
Plug in n=1arccos(−58015(760+3301​)​)+2π1
For sin(a)+15.2cos(a)=−10plug ina=arccos(−58015(760+3301​)​)+2π1sin(arccos(−58015(760+3301​)​)+2π1)+15.2cos(arccos(−58015(760+3301​)​)+2π1)=−10
Refine−10=−10
⇒True
Check the solution −arccos(−58015(760+3301​)​)+2πn:False
−arccos(−58015(760+3301​)​)+2πn
Plug in n=1−arccos(−58015(760+3301​)​)+2π1
For sin(a)+15.2cos(a)=−10plug ina=−arccos(−58015(760+3301​)​)+2π1sin(−arccos(−58015(760+3301​)​)+2π1)+15.2cos(−arccos(−58015(760+3301​)​)+2π1)=−10
Refine−11.41924…=−10
⇒False
Check the solution arccos(−58015(760−3301​)​)+2πn:False
arccos(−58015(760−3301​)​)+2πn
Plug in n=1arccos(−58015(760−3301​)​)+2π1
For sin(a)+15.2cos(a)=−10plug ina=arccos(−58015(760−3301​)​)+2π1sin(arccos(−58015(760−3301​)​)+2π1)+15.2cos(arccos(−58015(760−3301​)​)+2π1)=−10
Refine−8.40836…=−10
⇒False
Check the solution −arccos(−58015(760−3301​)​)+2πn:True
−arccos(−58015(760−3301​)​)+2πn
Plug in n=1−arccos(−58015(760−3301​)​)+2π1
For sin(a)+15.2cos(a)=−10plug ina=−arccos(−58015(760−3301​)​)+2π1sin(−arccos(−58015(760−3301​)​)+2π1)+15.2cos(−arccos(−58015(760−3301​)​)+2π1)=−10
Refine−10=−10
⇒True
a=arccos(−58015(760+3301​)​)+2πn,a=−arccos(−58015(760−3301​)​)+2πn
Show solutions in decimal forma=2.35262…+2πn,a=−2.22123…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

0=-6sin^2(θ)+3sin(θ)+2sin(2x+3/pi)= 1/2sqrt(3)cot(x/3)+1=0sin(x)=0.1115arccos(x)=11555

Frequently Asked Questions (FAQ)

  • What is the general solution for solvefor a,-10=sin(a)+15.2cos(a) ?

    The general solution for solvefor a,-10=sin(a)+15.2cos(a) is a=2.35262…+2pin,a=-2.22123…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024