解答
tan(4π+x)=1+tan(x)1−tan(x)
解答
x=2πn,x=π+2πn
+1
度数
x=0∘+360∘n,x=180∘+360∘n求解步骤
tan(4π+x)=1+tan(x)1−tan(x)
使用三角恒等式改写
tan(4π+x)=1+tan(x)1−tan(x)
使用三角恒等式改写
tan(4π+x)
使用基本三角恒等式: tan(x)=cos(x)sin(x)=cos(4π+x)sin(4π+x)
使用角和恒等式: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=cos(4π+x)sin(4π)cos(x)+cos(4π)sin(x)
使用角和恒等式: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(4π)cos(x)−sin(4π)sin(x)sin(4π)cos(x)+cos(4π)sin(x)
化简 cos(4π)cos(x)−sin(4π)sin(x)sin(4π)cos(x)+cos(4π)sin(x):cos(x)−sin(x)cos(x)+sin(x)
cos(4π)cos(x)−sin(4π)sin(x)sin(4π)cos(x)+cos(4π)sin(x)
sin(4π)cos(x)+cos(4π)sin(x)=22cos(x)+22sin(x)
sin(4π)cos(x)+cos(4π)sin(x)
化简 sin(4π):22
sin(4π)
使用以下普通恒等式:sin(4π)=22
sin(x) 周期表(周期为 2πn"):
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
=22=22cos(x)+cos(4π)sin(x)
化简 cos(4π):22
cos(4π)
使用以下普通恒等式:cos(4π)=22
cos(x) 周期表(周期为 2πn):
x06π4π3π2π32π43π65πcos(x)12322210−21−22−23xπ67π45π34π23π35π47π611πcos(x)−1−23−22−210212223
=22=22cos(x)+22sin(x)
=cos(4π)cos(x)−sin(4π)sin(x)22cos(x)+22sin(x)
cos(4π)cos(x)−sin(4π)sin(x)=22cos(x)−22sin(x)
cos(4π)cos(x)−sin(4π)sin(x)
化简 cos(4π):22
cos(4π)
使用以下普通恒等式:cos(4π)=22
cos(x) 周期表(周期为 2πn):
x06π4π3π2π32π43π65πcos(x)12322210−21−22−23xπ67π45π34π23π35π47π611πcos(x)−1−23−22−210212223
=22=22cos(x)−sin(4π)sin(x)
化简 sin(4π):22
sin(4π)
使用以下普通恒等式:sin(4π)=22
sin(x) 周期表(周期为 2πn"):
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
=22=22cos(x)−22sin(x)
=22cos(x)−22sin(x)22cos(x)+22sin(x)
乘 22cos(x):22cos(x)
22cos(x)
分式相乘: a⋅cb=ca⋅b=22cos(x)
=22cos(x)−22sin(x)22cos(x)+22sin(x)
乘 22sin(x):22sin(x)
22sin(x)
分式相乘: a⋅cb=ca⋅b=22sin(x)
=22cos(x)−22sin(x)22cos(x)+22sin(x)
乘 22cos(x):22cos(x)
22cos(x)
分式相乘: a⋅cb=ca⋅b=22cos(x)
=22cos(x)−22sin(x)22cos(x)+22sin(x)
乘 22sin(x):22sin(x)
22sin(x)
分式相乘: a⋅cb=ca⋅b=22sin(x)
=22cos(x)−22sin(x)22cos(x)+22sin(x)
合并分式 22cos(x)−22sin(x):22cos(x)−2sin(x)
使用法则 ca±cb=ca±b=22cos(x)−2sin(x)
=22cos(x)−2sin(x)22cos(x)+22sin(x)
合并分式 22cos(x)+22sin(x):22cos(x)+2sin(x)
使用法则 ca±cb=ca±b=22cos(x)+2sin(x)
=22cos(x)−2sin(x)22cos(x)+2sin(x)
分式相除: dcba=b⋅ca⋅d=2(2cos(x)−2sin(x))(2cos(x)+2sin(x))⋅2
约分:2=2cos(x)−2sin(x)2cos(x)+2sin(x)
因式分解出通项 2=2cos(x)−2sin(x)2(cos(x)+sin(x))
因式分解出通项 2=2(cos(x)−sin(x))2(cos(x)+sin(x))
约分:2=cos(x)−sin(x)cos(x)+sin(x)
=cos(x)−sin(x)cos(x)+sin(x)
cos(x)−sin(x)cos(x)+sin(x)=1+tan(x)1−tan(x)
cos(x)−sin(x)cos(x)+sin(x)=1+tan(x)1−tan(x)
两边减去 1+tan(x)1−tan(x)(tan(x)+1)(cos(x)−sin(x))2tan(x)cos(x)+2sin(x)=0
g(x)f(x)=0⇒f(x)=02tan(x)cos(x)+2sin(x)=0
使用三角恒等式改写
2sin(x)+2cos(x)tan(x)
使用基本三角恒等式: tan(x)=cos(x)sin(x)=2sin(x)+2cos(x)cos(x)sin(x)
化简 2sin(x)+2cos(x)cos(x)sin(x):4sin(x)
2sin(x)+2cos(x)cos(x)sin(x)
2cos(x)cos(x)sin(x)=2sin(x)
2cos(x)cos(x)sin(x)
分式相乘: a⋅cb=ca⋅b=cos(x)sin(x)⋅2cos(x)
约分:cos(x)=sin(x)⋅2
=2sin(x)+2sin(x)
同类项相加:2sin(x)+2sin(x)=4sin(x)=4sin(x)
=4sin(x)
4sin(x)=0
两边除以 4
4sin(x)=0
两边除以 444sin(x)=40
化简sin(x)=0
sin(x)=0
sin(x)=0的通解
sin(x) 周期表(周期为 2πn"):
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
解 x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn