Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(pi/4+x)=(1-tan(x))/(1+tan(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(4π​+x)=1+tan(x)1−tan(x)​

Solution

x=2πn,x=π+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n
Solution steps
tan(4π​+x)=1+tan(x)1−tan(x)​
Rewrite using trig identities
tan(4π​+x)=1+tan(x)1−tan(x)​
Rewrite using trig identities
tan(4π​+x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(4π​+x)sin(4π​+x)​
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=cos(4π​+x)sin(4π​)cos(x)+cos(4π​)sin(x)​
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(4π​)cos(x)−sin(4π​)sin(x)sin(4π​)cos(x)+cos(4π​)sin(x)​
Simplify cos(4π​)cos(x)−sin(4π​)sin(x)sin(4π​)cos(x)+cos(4π​)sin(x)​:cos(x)−sin(x)cos(x)+sin(x)​
cos(4π​)cos(x)−sin(4π​)sin(x)sin(4π​)cos(x)+cos(4π​)sin(x)​
sin(4π​)cos(x)+cos(4π​)sin(x)=22​​cos(x)+22​​sin(x)
sin(4π​)cos(x)+cos(4π​)sin(x)
Simplify sin(4π​):22​​
sin(4π​)
Use the following trivial identity:sin(4π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(x)+cos(4π​)sin(x)
Simplify cos(4π​):22​​
cos(4π​)
Use the following trivial identity:cos(4π​)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​cos(x)+22​​sin(x)
=cos(4π​)cos(x)−sin(4π​)sin(x)22​​cos(x)+22​​sin(x)​
cos(4π​)cos(x)−sin(4π​)sin(x)=22​​cos(x)−22​​sin(x)
cos(4π​)cos(x)−sin(4π​)sin(x)
Simplify cos(4π​):22​​
cos(4π​)
Use the following trivial identity:cos(4π​)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​cos(x)−sin(4π​)sin(x)
Simplify sin(4π​):22​​
sin(4π​)
Use the following trivial identity:sin(4π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(x)−22​​sin(x)
=22​​cos(x)−22​​sin(x)22​​cos(x)+22​​sin(x)​
Multiply 22​​cos(x):22​cos(x)​
22​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
=22​cos(x)​−22​​sin(x)22​​cos(x)+22​​sin(x)​
Multiply 22​​sin(x):22​sin(x)​
22​​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=22​cos(x)​−22​sin(x)​22​​cos(x)+22​​sin(x)​
Multiply 22​​cos(x):22​cos(x)​
22​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
=22​cos(x)​−22​sin(x)​22​cos(x)​+22​​sin(x)​
Multiply 22​​sin(x):22​sin(x)​
22​​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=22​cos(x)​−22​sin(x)​22​cos(x)​+22​sin(x)​​
Combine the fractions 22​cos(x)​−22​sin(x)​:22​cos(x)−2​sin(x)​
Apply rule ca​±cb​=ca±b​=22​cos(x)−2​sin(x)​
=22​cos(x)−2​sin(x)​22​cos(x)​+22​sin(x)​​
Combine the fractions 22​cos(x)​+22​sin(x)​:22​cos(x)+2​sin(x)​
Apply rule ca​±cb​=ca±b​=22​cos(x)+2​sin(x)​
=22​cos(x)−2​sin(x)​22​cos(x)+2​sin(x)​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=2(2​cos(x)−2​sin(x))(2​cos(x)+2​sin(x))⋅2​
Cancel the common factor: 2=2​cos(x)−2​sin(x)2​cos(x)+2​sin(x)​
Factor out common term 2​=2​cos(x)−2​sin(x)2​(cos(x)+sin(x))​
Factor out common term 2​=2​(cos(x)−sin(x))2​(cos(x)+sin(x))​
Cancel the common factor: 2​=cos(x)−sin(x)cos(x)+sin(x)​
=cos(x)−sin(x)cos(x)+sin(x)​
cos(x)−sin(x)cos(x)+sin(x)​=1+tan(x)1−tan(x)​
cos(x)−sin(x)cos(x)+sin(x)​=1+tan(x)1−tan(x)​
Subtract 1+tan(x)1−tan(x)​ from both sides(tan(x)+1)(cos(x)−sin(x))2tan(x)cos(x)+2sin(x)​=0
g(x)f(x)​=0⇒f(x)=02tan(x)cos(x)+2sin(x)=0
Rewrite using trig identities
2sin(x)+2cos(x)tan(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=2sin(x)+2cos(x)cos(x)sin(x)​
Simplify 2sin(x)+2cos(x)cos(x)sin(x)​:4sin(x)
2sin(x)+2cos(x)cos(x)sin(x)​
2cos(x)cos(x)sin(x)​=2sin(x)
2cos(x)cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)⋅2cos(x)​
Cancel the common factor: cos(x)=sin(x)⋅2
=2sin(x)+2sin(x)
Add similar elements: 2sin(x)+2sin(x)=4sin(x)=4sin(x)
=4sin(x)
4sin(x)=0
Divide both sides by 4
4sin(x)=0
Divide both sides by 444sin(x)​=40​
Simplifysin(x)=0
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(x)= 45/52solvefor x,cos(2x)=(m-1)/(m+1)6tan^2(x)+8=102sin(x-pi/4)+sqrt(2)cos(x)=1sin^2(θ)=2cos(θ)+1

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(pi/4+x)=(1-tan(x))/(1+tan(x)) ?

    The general solution for tan(pi/4+x)=(1-tan(x))/(1+tan(x)) is x=2pin,x=pi+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024