Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos^2(3/4 pi+x)+sin^2(7/4 pi-x)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos2(43​π+x)+sin2(47​π−x)=1

Solution

x=2πn+π,x=2πn+23π​,x=2πn,x=2πn+2π​
+1
Degrees
x=180∘+360∘n,x=270∘+360∘n,x=0∘+360∘n,x=90∘+360∘n
Solution steps
cos2(43​π+x)+sin2(47​π−x)=1
Rewrite using trig identities
cos2(43​π+x)+sin2(47​π−x)=1
Rewrite using trig identities
cos(43​π+x)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(43​π)cos(x)−sin(43​π)sin(x)
Simplify cos(43​π)cos(x)−sin(43​π)sin(x):2−2​cos(x)−2​sin(x)​
cos(43​π)cos(x)−sin(43​π)sin(x)
cos(43​π)cos(x)=−22​cos(x)​
cos(43​π)cos(x)
Multiply 43​π:43π​
43​π
Multiply fractions: a⋅cb​=ca⋅b​=43π​
=cos(43π​)cos(x)
Simplify cos(43π​):−22​​
cos(43π​)
Use the following trivial identity:cos(43π​)=−22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−22​​
=−22​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=−22​cos(x)​
=−22​cos(x)​−sin(π43​)sin(x)
sin(43​π)sin(x)=22​sin(x)​
sin(43​π)sin(x)
Multiply 43​π:43π​
43​π
Multiply fractions: a⋅cb​=ca⋅b​=43π​
=sin(43π​)sin(x)
Simplify sin(43π​):22​​
sin(43π​)
Use the following trivial identity:sin(43π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=−22​cos(x)​−22​sin(x)​
Apply rule ca​±cb​=ca±b​=2−2​cos(x)−2​sin(x)​
=2−2​cos(x)−2​sin(x)​
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(47​π)cos(x)−cos(47​π)sin(x)
Simplify sin(47​π)cos(x)−cos(47​π)sin(x):2−2​cos(x)−2​sin(x)​
sin(47​π)cos(x)−cos(47​π)sin(x)
sin(47​π)cos(x)=−22​cos(x)​
sin(47​π)cos(x)
Multiply 47​π:47π​
47​π
Multiply fractions: a⋅cb​=ca⋅b​=47π​
=sin(47π​)cos(x)
sin(47π​)=−22​​
sin(47π​)
Rewrite using trig identities:sin(π)cos(43π​)+cos(π)sin(43π​)
sin(47π​)
Write sin(47π​)as sin(π+43π​)=sin(π+43π​)
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(π)cos(43π​)+cos(π)sin(43π​)
=sin(π)cos(43π​)+cos(π)sin(43π​)
Use the following trivial identity:sin(π)=0
sin(π)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Use the following trivial identity:cos(43π​)=−22​​
cos(43π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−22​​
Use the following trivial identity:cos(π)=(−1)
cos(π)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Use the following trivial identity:sin(43π​)=22​​
sin(43π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=0⋅(−22​​)+(−1)22​​
Simplify=−22​​
=−22​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=−22​cos(x)​
=−22​cos(x)​−cos(π47​)sin(x)
cos(47​π)sin(x)=22​sin(x)​
cos(47​π)sin(x)
Multiply 47​π:47π​
47​π
Multiply fractions: a⋅cb​=ca⋅b​=47π​
=cos(47π​)sin(x)
cos(47π​)=22​​
cos(47π​)
Rewrite using trig identities:cos(π)cos(43π​)−sin(π)sin(43π​)
cos(47π​)
Write cos(47π​)as cos(π+43π​)=cos(π+43π​)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(π)cos(43π​)−sin(π)sin(43π​)
=cos(π)cos(43π​)−sin(π)sin(43π​)
Use the following trivial identity:cos(π)=(−1)
cos(π)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Use the following trivial identity:cos(43π​)=−22​​
cos(43π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−22​​
Use the following trivial identity:sin(π)=0
sin(π)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
Use the following trivial identity:sin(43π​)=22​​
sin(43π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=(−1)(−22​​)−0⋅22​​
Simplify=22​​
=22​​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=−22​cos(x)​−22​sin(x)​
Apply rule ca​±cb​=ca±b​=2−2​cos(x)−2​sin(x)​
=2−2​cos(x)−2​sin(x)​
(2−2​cos(x)−2​sin(x)​)2+(2−2​cos(x)−2​sin(x)​)2=1
Simplify (2−2​cos(x)−2​sin(x)​)2+(2−2​cos(x)−2​sin(x)​)2:(cos(x)+sin(x))2
(2−2​cos(x)−2​sin(x)​)2+(2−2​cos(x)−2​sin(x)​)2
Add similar elements: (2−2​cos(x)−2​sin(x)​)2+(2−2​cos(x)−2​sin(x)​)2=2(2−2​cos(x)−2​sin(x)​)2=2(2−2​cos(x)−2​sin(x)​)2
(2−2​cos(x)−2​sin(x)​)2=2(cos(x)+sin(x))2​
(2−2​cos(x)−2​sin(x)​)2
2−2​cos(x)−2​sin(x)​=−2​cos(x)+sin(x)​
2−2​cos(x)−2​sin(x)​
Factor out common term 2​=−22​(cos(x)+sin(x))​
Cancel −22​(cos(x)+sin(x))​:−2​cos(x)+sin(x)​
−22​(cos(x)+sin(x))​
Apply radical rule: 2​=221​=−2221​(cos(x)+sin(x))​
Apply exponent rule: xbxa​=xb−a1​21221​​=21−21​1​=−2−21​+1cos(x)+sin(x)​
Subtract the numbers: 1−21​=21​=−221​cos(x)+sin(x)​
Apply radical rule: 221​=2​=−2​cos(x)+sin(x)​
=−2​cos(x)+sin(x)​
=(−2​cos(x)+sin(x)​)2
Apply exponent rule: (−a)n=an,if n is even(−2​cos(x)+sin(x)​)2=(2​cos(x)+sin(x)​)2=(2​cos(x)+sin(x)​)2
Apply exponent rule: (ba​)c=bcac​=(2​)2(cos(x)+sin(x))2​
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=2(cos(x)+sin(x))2​
=2⋅2(cos(x)+sin(x))2​
Multiply fractions: a⋅cb​=ca⋅b​=2(cos(x)+sin(x))2⋅2​
Cancel the common factor: 2=(cos(x)+sin(x))2
(cos(x)+sin(x))2=1
(cos(x)+sin(x))2=1
Subtract 1 from both sides(cos(x)+sin(x))2−1=0
Factor (cos(x)+sin(x))2−1:(cos(x)+sin(x)+1)(cos(x)+sin(x)−1)
(cos(x)+sin(x))2−1
Rewrite 1 as 12=(cos(x)+sin(x))2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(cos(x)+sin(x))2−12=((cos(x)+sin(x))+1)((cos(x)+sin(x))−1)=((cos(x)+sin(x))+1)((cos(x)+sin(x))−1)
Refine=(cos(x)+sin(x)+1)(cos(x)+sin(x)−1)
(cos(x)+sin(x)+1)(cos(x)+sin(x)−1)=0
Solving each part separatelycos(x)+sin(x)+1=0orcos(x)+sin(x)−1=0
cos(x)+sin(x)+1=0:x=2πn+π,x=2πn+23π​
cos(x)+sin(x)+1=0
Rewrite using trig identities
cos(x)+sin(x)+1
sin(x)+cos(x)=2​sin(x+4π​)
sin(x)+cos(x)
Rewrite as=2​(2​1​sin(x)+2​1​cos(x))
Use the following trivial identity: cos(4π​)=2​1​Use the following trivial identity: sin(4π​)=2​1​=2​(cos(4π​)sin(x)+sin(4π​)cos(x))
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=2​sin(x+4π​)
=1+2​sin(x+4π​)
1+2​sin(x+4π​)=0
Move 1to the right side
1+2​sin(x+4π​)=0
Subtract 1 from both sides1+2​sin(x+4π​)−1=0−1
Simplify2​sin(x+4π​)=−1
2​sin(x+4π​)=−1
Divide both sides by 2​
2​sin(x+4π​)=−1
Divide both sides by 2​2​2​sin(x+4π​)​=2​−1​
Simplify
2​2​sin(x+4π​)​=2​−1​
Simplify 2​2​sin(x+4π​)​:sin(x+4π​)
2​2​sin(x+4π​)​
Cancel the common factor: 2​=sin(x+4π​)
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
sin(x+4π​)=−22​​
sin(x+4π​)=−22​​
sin(x+4π​)=−22​​
General solutions for sin(x+4π​)=−22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x+4π​=45π​+2πn,x+4π​=47π​+2πn
x+4π​=45π​+2πn,x+4π​=47π​+2πn
Solve x+4π​=45π​+2πn:x=2πn+π
x+4π​=45π​+2πn
Move 4π​to the right side
x+4π​=45π​+2πn
Subtract 4π​ from both sidesx+4π​−4π​=45π​+2πn−4π​
Simplify
x+4π​−4π​=45π​+2πn−4π​
Simplify x+4π​−4π​:x
x+4π​−4π​
Add similar elements: 4π​−4π​=0
=x
Simplify 45π​+2πn−4π​:2πn+π
45π​+2πn−4π​
Group like terms=2πn−4π​+45π​
Combine the fractions −4π​+45π​:π
Apply rule ca​±cb​=ca±b​=4−π+5π​
Add similar elements: −π+5π=4π=44π​
Divide the numbers: 44​=1=π
=2πn+π
x=2πn+π
x=2πn+π
x=2πn+π
Solve x+4π​=47π​+2πn:x=2πn+23π​
x+4π​=47π​+2πn
Move 4π​to the right side
x+4π​=47π​+2πn
Subtract 4π​ from both sidesx+4π​−4π​=47π​+2πn−4π​
Simplify
x+4π​−4π​=47π​+2πn−4π​
Simplify x+4π​−4π​:x
x+4π​−4π​
Add similar elements: 4π​−4π​=0
=x
Simplify 47π​+2πn−4π​:2πn+23π​
47π​+2πn−4π​
Group like terms=2πn−4π​+47π​
Combine the fractions −4π​+47π​:23π​
Apply rule ca​±cb​=ca±b​=4−π+7π​
Add similar elements: −π+7π=6π=46π​
Cancel the common factor: 2=23π​
=2πn+23π​
x=2πn+23π​
x=2πn+23π​
x=2πn+23π​
x=2πn+π,x=2πn+23π​
cos(x)+sin(x)−1=0:x=2πn,x=2πn+2π​
cos(x)+sin(x)−1=0
Rewrite using trig identities
cos(x)+sin(x)−1
sin(x)+cos(x)=2​sin(x+4π​)
sin(x)+cos(x)
Rewrite as=2​(2​1​sin(x)+2​1​cos(x))
Use the following trivial identity: cos(4π​)=2​1​Use the following trivial identity: sin(4π​)=2​1​=2​(cos(4π​)sin(x)+sin(4π​)cos(x))
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=2​sin(x+4π​)
=−1+2​sin(x+4π​)
−1+2​sin(x+4π​)=0
Move 1to the right side
−1+2​sin(x+4π​)=0
Add 1 to both sides−1+2​sin(x+4π​)+1=0+1
Simplify2​sin(x+4π​)=1
2​sin(x+4π​)=1
Divide both sides by 2​
2​sin(x+4π​)=1
Divide both sides by 2​2​2​sin(x+4π​)​=2​1​
Simplify
2​2​sin(x+4π​)​=2​1​
Simplify 2​2​sin(x+4π​)​:sin(x+4π​)
2​2​sin(x+4π​)​
Cancel the common factor: 2​=sin(x+4π​)
Simplify 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
sin(x+4π​)=22​​
sin(x+4π​)=22​​
sin(x+4π​)=22​​
General solutions for sin(x+4π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x+4π​=4π​+2πn,x+4π​=43π​+2πn
x+4π​=4π​+2πn,x+4π​=43π​+2πn
Solve x+4π​=4π​+2πn:x=2πn
x+4π​=4π​+2πn
Subtract 4π​ from both sidesx+4π​−4π​=4π​+2πn−4π​
Simplifyx=2πn
Solve x+4π​=43π​+2πn:x=2πn+2π​
x+4π​=43π​+2πn
Move 4π​to the right side
x+4π​=43π​+2πn
Subtract 4π​ from both sidesx+4π​−4π​=43π​+2πn−4π​
Simplify
x+4π​−4π​=43π​+2πn−4π​
Simplify x+4π​−4π​:x
x+4π​−4π​
Add similar elements: 4π​−4π​=0
=x
Simplify 43π​+2πn−4π​:2πn+2π​
43π​+2πn−4π​
Group like terms=2πn−4π​+43π​
Combine the fractions −4π​+43π​:2π​
Apply rule ca​±cb​=ca±b​=4−π+3π​
Add similar elements: −π+3π=2π=42π​
Cancel the common factor: 2=2π​
=2πn+2π​
x=2πn+2π​
x=2πn+2π​
x=2πn+2π​
x=2πn,x=2πn+2π​
Combine all the solutionsx=2πn+π,x=2πn+23π​,x=2πn,x=2πn+2π​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(4x)=-sin(x)2sqrt((2))cos(x-4)sin(x)cos(x)=0cos(x)(tan(x)-sqrt(3))=02+2cos(t)=6cos(t)2cos(x)+1=cos(x)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024