Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3/(2cos(θ))=3-3cos(θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2cos(θ)3​=3−3cos(θ)

Solution

NoSolutionforθ∈R
Solution steps
2cos(θ)3​=3−3cos(θ)
Solve by substitution
2cos(θ)3​=3−3cos(θ)
Let: cos(θ)=u2u3​=3−3u
2u3​=3−3u:u=21​−i21​,u=21​+i21​
2u3​=3−3u
Multiply both sides by u
2u3​=3−3u
Multiply both sides by u2u3​u=3u−3uu
Simplify −3uu:−3u2
2u3​u=3u−3uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=−3u1+1
Add the numbers: 1+1=2=−3u2
23​=3u−3u2
23​=3u−3u2
Solve 23​=3u−3u2:u=21​−i21​,u=21​+i21​
23​=3u−3u2
Multiply both sides by 2
23​=3u−3u2
Multiply both sides by 223​⋅2=3u⋅2−3u2⋅2
Simplify3=6u−6u2
3=6u−6u2
Switch sides6u−6u2=3
Move 3to the left side
6u−6u2=3
Subtract 3 from both sides6u−6u2−3=3−3
Simplify6u−6u2−3=0
6u−6u2−3=0
Write in the standard form ax2+bx+c=0−6u2+6u−3=0
Solve with the quadratic formula
−6u2+6u−3=0
Quadratic Equation Formula:
For a=−6,b=6,c=−3u1,2​=2(−6)−6±62−4(−6)(−3)​​
u1,2​=2(−6)−6±62−4(−6)(−3)​​
Simplify 62−4(−6)(−3)​:6i
62−4(−6)(−3)​
Apply rule −(−a)=a=62−4⋅6⋅3​
Multiply the numbers: 4⋅6⋅3=72=62−72​
Apply imaginary number rule: −a​=ia​=i72−62​
−62+72​=6
−62+72​
62=36=−36+72​
Add/Subtract the numbers: −36+72=36=36​
Factor the number: 36=62=62​
Apply radical rule: 62​=6=6
=6i
u1,2​=2(−6)−6±6i​
Separate the solutionsu1​=2(−6)−6+6i​,u2​=2(−6)−6−6i​
u=2(−6)−6+6i​:21​−i21​
2(−6)−6+6i​
Remove parentheses: (−a)=−a=−2⋅6−6+6i​
Multiply the numbers: 2⋅6=12=−12−6+6i​
Apply the fraction rule: −ba​=−ba​=−12−6+6i​
Cancel 12−6+6i​:2−1+i​
12−6+6i​
Factor −6+6i:6(−1+i)
−6+6i
Rewrite as=−6⋅1+6i
Factor out common term 6=6(−1+i)
=126(−1+i)​
Cancel the common factor: 6=2−1+i​
=−2−1+i​
Rewrite −2−1+i​ in standard complex form: 21​−21​i
−2−1+i​
Apply the fraction rule: ca±b​=ca​±cb​2−1+i​=−(−21​)−(2i​)=−(−21​)−(2i​)
Remove parentheses: (a)=a,−(−a)=a=21​−2i​
=21​−21​i
u=2(−6)−6−6i​:21​+i21​
2(−6)−6−6i​
Remove parentheses: (−a)=−a=−2⋅6−6−6i​
Multiply the numbers: 2⋅6=12=−12−6−6i​
Apply the fraction rule: −ba​=−ba​=−12−6−6i​
Cancel 12−6−6i​:−21+i​
12−6−6i​
Factor −6−6i:−6(1+i)
−6−6i
Rewrite as=−6⋅1−6i
Factor out common term 6=−6(1+i)
=−126(1+i)​
Cancel the common factor: 6=−21+i​
=−(−21+i​)
Apply rule −(−a)=a=21+i​
Rewrite 21+i​ in standard complex form: 21​+21​i
21+i​
Apply the fraction rule: ca±b​=ca​±cb​21+i​=21​+2i​=21​+2i​
=21​+21​i
The solutions to the quadratic equation are:u=21​−i21​,u=21​+i21​
u=21​−i21​,u=21​+i21​
Substitute back u=cos(θ)cos(θ)=21​−i21​,cos(θ)=21​+i21​
cos(θ)=21​−i21​,cos(θ)=21​+i21​
cos(θ)=21​−i21​:No Solution
cos(θ)=21​−i21​
NoSolution
cos(θ)=21​+i21​:No Solution
cos(θ)=21​+i21​
NoSolution
Combine all the solutionsNoSolutionforθ∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(θ)=1.25cos(x)=-cos^2(x)4*sin^2(x)-1=0tan(x)=0.5918300000000…cos(θ)=(sqrt(5))/8

Frequently Asked Questions (FAQ)

  • What is the general solution for 3/(2cos(θ))=3-3cos(θ) ?

    The general solution for 3/(2cos(θ))=3-3cos(θ) is No Solution for θ\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024