Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(2x-30)cot(50)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(2x−30∘)cot(50∘)=1

Solution

x=2180∘n​+40∘
+1
Radians
x=92π​+2π​n
Solution steps
tan(2x−30∘)cot(50∘)=1
Divide both sides by cot(50∘)
tan(2x−30∘)cot(50∘)=1
Divide both sides by cot(50∘)cot(50∘)tan(2x−30∘)cot(50∘)​=cot(50∘)1​
Simplifytan(2x−30∘)=cot(50∘)1​
tan(2x−30∘)=cot(50∘)1​
Apply trig inverse properties
tan(2x−30∘)=cot(50∘)1​
General solutions for tan(2x−30∘)=cot(50∘)1​tan(x)=a⇒x=arctan(a)+180∘n2x−30∘=arctan(cot(50∘)1​)+180∘n
2x−30∘=arctan(cot(50∘)1​)+180∘n
Solve 2x−30∘=arctan(cot(50∘)1​)+180∘n:x=2180∘n​+40∘
2x−30∘=arctan(cot(50∘)1​)+180∘n
Simplify arctan(cot(50∘)1​)+180∘n:50∘+180∘n
arctan(cot(50∘)1​)+180∘n
arctan(cot(50∘)1​)=50∘
arctan(cot(50∘)1​)
Rewrite using trig identities:cot(50∘)=tan(50∘)1​
cot(50∘)
Use the basic trigonometric identity: cot(x)=tan(x)1​=tan(50∘)1​
=arctan(tan(50∘)1​1​)
Simplify=arctan(tan(50∘))
Use the inverse trig property:50∘
arctan(tan(50∘))
For −90∘<x<90∘,arctan(tan(x))=x
−90∘<50∘<90∘
=50∘
=50∘
=50∘+180∘n
2x−30∘=50∘+180∘n
Move 30∘to the right side
2x−30∘=50∘+180∘n
Add 30∘ to both sides2x−30∘+30∘=50∘+180∘n+30∘
Simplify
2x−30∘+30∘=50∘+180∘n+30∘
Simplify 2x−30∘+30∘:2x
2x−30∘+30∘
Add similar elements: −30∘+30∘=0
=2x
Simplify 50∘+180∘n+30∘:180∘n+80∘
50∘+180∘n+30∘
Group like terms=180∘n+30∘+50∘
Least Common Multiplier of 6,18:18
6,18
Least Common Multiplier (LCM)
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Prime factorization of 18:2⋅3⋅3
18
18divides by 218=9⋅2=2⋅9
9divides by 39=3⋅3=2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3⋅3
Multiply each factor the greatest number of times it occurs in either 6 or 18=2⋅3⋅3
Multiply the numbers: 2⋅3⋅3=18=18
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 18
For 30∘:multiply the denominator and numerator by 330∘=6⋅3180∘3​=30∘
=30∘+50∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=18180∘3+900∘​
Add similar elements: 540∘+900∘=1440∘=80∘
Cancel the common factor: 2=180∘n+80∘
2x=180∘n+80∘
2x=180∘n+80∘
2x=180∘n+80∘
Divide both sides by 2
2x=180∘n+80∘
Divide both sides by 222x​=2180∘n​+280∘​
Simplify
22x​=2180∘n​+280∘​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2180∘n​+280∘​:2180∘n​+40∘
2180∘n​+280∘​
280∘​=40∘
280∘​
Apply the fraction rule: acb​​=c⋅ab​=9⋅2720∘​
Multiply the numbers: 9⋅2=18=40∘
Cancel the common factor: 2=40∘
=2180∘n​+40∘
x=2180∘n​+40∘
x=2180∘n​+40∘
x=2180∘n​+40∘
x=2180∘n​+40∘

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

solvefor x,3sec^4(x)-10sec^2(x)+8=04(1+sin(x))sin(x)=3tan(x)=0.573sin(x)-2=7sin(x)-355^2=50^2+90^2-2*50*90*cos(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(2x-30)cot(50)=1 ?

    The general solution for tan(2x-30)cot(50)=1 is x=(180n)/2+40
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024