Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor x,f=(cos(2x))/(cos(x)-sin(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solvefor

Solution

x=arcsin(2​f​)+2πn−4π​,x=π+arcsin(−2​f​)+2πn−4π​
Solution steps
f=cos(x)−sin(x)cos(2x)​
Switch sidescos(x)−sin(x)cos(2x)​=f
Subtract f from both sidescos(x)−sin(x)cos(2x)​−f=0
Simplify cos(x)−sin(x)cos(2x)​−f:cos(x)−sin(x)cos(2x)−f(cos(x)−sin(x))​
cos(x)−sin(x)cos(2x)​−f
Convert element to fraction: f=cos(x)−sin(x)f(cos(x)−sin(x))​=cos(x)−sin(x)cos(2x)​−cos(x)−sin(x)f(cos(x)−sin(x))​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)−sin(x)cos(2x)−f(cos(x)−sin(x))​
cos(x)−sin(x)cos(2x)−f(cos(x)−sin(x))​=0
g(x)f(x)​=0⇒f(x)=0cos(2x)−f(cos(x)−sin(x))=0
Rewrite using trig identities
cos(2x)−(cos(x)−sin(x))f
cos(2x)=(cos(x)+sin(x))(cos(x)−sin(x))
cos(2x)
Use the Double Angle identity: cos(2x)=cos2(x)−sin2(x)=cos2(x)−sin2(x)
Factor cos2(x)−sin2(x):(cos(x)+sin(x))(cos(x)−sin(x))
cos2(x)−sin2(x)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)cos2(x)−sin2(x)=(cos(x)+sin(x))(cos(x)−sin(x))=(cos(x)+sin(x))(cos(x)−sin(x))
=(cos(x)+sin(x))(cos(x)−sin(x))
=(cos(x)+sin(x))(cos(x)−sin(x))−f(cos(x)−sin(x))
(cos(x)+sin(x))(cos(x)−sin(x))−(cos(x)−sin(x))f=0
Factor (cos(x)+sin(x))(cos(x)−sin(x))−(cos(x)−sin(x))f:(cos(x)−sin(x))(cos(x)+sin(x)−f)
(cos(x)+sin(x))(cos(x)−sin(x))−(cos(x)−sin(x))f
Rewrite as=(cos(x)−sin(x))(cos(x)+sin(x))−(cos(x)−sin(x))f
Factor out common term (cos(x)−sin(x))=(cos(x)−sin(x))(cos(x)+sin(x)−f)
(cos(x)−sin(x))(cos(x)+sin(x)−f)=0
Solving each part separatelycos(x)−sin(x)=0orcos(x)+sin(x)−f=0
cos(x)−sin(x)=0:x=4π​+πn
cos(x)−sin(x)=0
Rewrite using trig identities
cos(x)−sin(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)cos(x)−sin(x)​=cos(x)0​
Simplify1−cos(x)sin(x)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)1−tan(x)=0
1−tan(x)=0
Move 1to the right side
1−tan(x)=0
Subtract 1 from both sides1−tan(x)−1=0−1
Simplify−tan(x)=−1
−tan(x)=−1
Divide both sides by −1
−tan(x)=−1
Divide both sides by −1−1−tan(x)​=−1−1​
Simplifytan(x)=1
tan(x)=1
General solutions for tan(x)=1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=4π​+πn
x=4π​+πn
cos(x)+sin(x)−f=0:x=arcsin(2​f​)+2πn−4π​,x=π+arcsin(−2​f​)+2πn−4π​
cos(x)+sin(x)−f=0
Rewrite using trig identities
cos(x)+sin(x)−f
sin(x)+cos(x)=2​sin(x+4π​)
sin(x)+cos(x)
Rewrite as=2​(2​1​sin(x)+2​1​cos(x))
Use the following trivial identity: cos(4π​)=2​1​Use the following trivial identity: sin(4π​)=2​1​=2​(cos(4π​)sin(x)+sin(4π​)cos(x))
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=2​sin(x+4π​)
=−f+2​sin(x+4π​)
−f+2​sin(x+4π​)=0
Move fto the right side
−f+2​sin(x+4π​)=0
Add f to both sides−f+2​sin(x+4π​)+f=0+f
Simplify2​sin(x+4π​)=f
2​sin(x+4π​)=f
Divide both sides by 2​
2​sin(x+4π​)=f
Divide both sides by 2​2​2​sin(x+4π​)​=2​f​
Simplify
2​2​sin(x+4π​)​=2​f​
Simplify 2​2​sin(x+4π​)​:sin(x+4π​)
2​2​sin(x+4π​)​
Cancel the common factor: 2​=sin(x+4π​)
Simplify 2​f​:22​f​
2​f​
Multiply by the conjugate 2​2​​=2​2​f2​​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​f​
sin(x+4π​)=22​f​
sin(x+4π​)=22​f​
sin(x+4π​)=22​f​
Apply trig inverse properties
sin(x+4π​)=22​f​
General solutions for sin(x+4π​)=22​f​sin(x)=a⇒x=arcsin(a)+2πn,x=π+arcsin(a)+2πnx+4π​=arcsin(22​f​)+2πn,x+4π​=π+arcsin(−22​f​)+2πn
x+4π​=arcsin(22​f​)+2πn,x+4π​=π+arcsin(−22​f​)+2πn
Solve x+4π​=arcsin(22​f​)+2πn:x=arcsin(2​f​)+2πn−4π​
x+4π​=arcsin(22​f​)+2πn
Simplify arcsin(22​f​)+2πn:arcsin(2​f​)+2πn
arcsin(22​f​)+2πn
22​f​=2​f​
22​f​
Apply radical rule: 2​=221​=2221​f​
Apply exponent rule: xbxa​=xb−a1​21221​​=21−21​1​=21−21​f​
Subtract the numbers: 1−21​=21​=221​f​
Apply radical rule: 221​=2​=2​f​
=arcsin(2​f​)+2πn
x+4π​=arcsin(2​f​)+2πn
Move 4π​to the right side
x+4π​=arcsin(2​f​)+2πn
Subtract 4π​ from both sidesx+4π​−4π​=arcsin(2​f​)+2πn−4π​
Simplifyx=arcsin(2​f​)+2πn−4π​
x=arcsin(2​f​)+2πn−4π​
Solve x+4π​=π+arcsin(−22​f​)+2πn:x=π+arcsin(−2​f​)+2πn−4π​
x+4π​=π+arcsin(−22​f​)+2πn
Simplify π+arcsin(−22​f​)+2πn:π+arcsin(−2​f​)+2πn
π+arcsin(−22​f​)+2πn
22​f​=2​f​
22​f​
Apply radical rule: 2​=221​=2221​f​
Apply exponent rule: xbxa​=xb−a1​21221​​=21−21​1​=21−21​f​
Subtract the numbers: 1−21​=21​=221​f​
Apply radical rule: 221​=2​=2​f​
=π+arcsin(−2​f​)+2πn
x+4π​=π+arcsin(−2​f​)+2πn
Move 4π​to the right side
x+4π​=π+arcsin(−2​f​)+2πn
Subtract 4π​ from both sidesx+4π​−4π​=π+arcsin(−2​f​)+2πn−4π​
Simplifyx=π+arcsin(−2​f​)+2πn−4π​
x=π+arcsin(−2​f​)+2πn−4π​
x=arcsin(2​f​)+2πn−4π​,x=π+arcsin(−2​f​)+2πn−4π​
Combine all the solutionsx=4π​+πn,x=arcsin(2​f​)+2πn−4π​,x=π+arcsin(−2​f​)+2πn−4π​
Since the equation is undefined for:4π​+πnx=arcsin(2​f​)+2πn−4π​,x=π+arcsin(−2​f​)+2πn−4π​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(2x)+5=6.25sin(x)=4sin(8)csc(x)= 7/33-cos(x)=3-sin(x)cos(t)= 1/3 ,0<t< 1/2 pi
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024