Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(1+tan(x/2))/(1-tan(x/2))=sqrt(4.137131)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1−tan(2x​)1+tan(2x​)​=4.137131​

Solution

x=2⋅0.32845…+2πn
+1
Degrees
x=37.63851…∘+360∘n
Solution steps
1−tan(2x​)1+tan(2x​)​=4.137131​
Solve by substitution
1−tan(2x​)1+tan(2x​)​=4.137131​
Let: tan(2x​)=u1−u1+u​=4.137131​
1−u1+u​=4.137131​:u=3.1371315.137131−24.137131​​
1−u1+u​=4.137131​
Multiply both sides by 1−u
1−u1+u​=4.137131​
Multiply both sides by 1−u1−u1+u​(1−u)=4.137131​(1−u)
Simplify1+u=4.137131​(1−u)
1+u=4.137131​(1−u)
Expand 4.137131​(1−u):4.137131​−4.137131​u
4.137131​(1−u)
Apply the distributive law: a(b−c)=ab−aca=4.137131​,b=1,c=u=4.137131​⋅1−4.137131​u
=1⋅4.137131​−4.137131​u
Multiply: 1⋅4.137131​=4.137131​=4.137131​−4.137131​u
1+u=4.137131​−4.137131​u
Move 1to the right side
1+u=4.137131​−4.137131​u
Subtract 1 from both sides1+u−1=4.137131​−4.137131​u−1
Simplifyu=4.137131​−4.137131​u−1
u=4.137131​−4.137131​u−1
Move 4.137131​uto the left side
u=4.137131​−4.137131​u−1
Add 4.137131​u to both sidesu+4.137131​u=4.137131​−4.137131​u−1+4.137131​u
Simplifyu+4.137131​u=4.137131​−1
u+4.137131​u=4.137131​−1
Factor u+4.137131​u:(1+4.137131​)u
u+4.137131​u
Factor out common term u=u(1+4.137131​)
(1+4.137131​)u=4.137131​−1
Divide both sides by 1+4.137131​
(1+4.137131​)u=4.137131​−1
Divide both sides by 1+4.137131​1+4.137131​(1+4.137131​)u​=1+4.137131​4.137131​​−1+4.137131​1​
Simplify
1+4.137131​(1+4.137131​)u​=1+4.137131​4.137131​​−1+4.137131​1​
Simplify 1+4.137131​(1+4.137131​)u​:u
1+4.137131​(1+4.137131​)u​
Cancel the common factor: 1+4.137131​=u
Simplify 1+4.137131​4.137131​​−1+4.137131​1​:3.1371315.137131−24.137131​​
1+4.137131​4.137131​​−1+4.137131​1​
Apply rule ca​±cb​=ca±b​=1+4.137131​4.137131​−1​
Multiply by the conjugate 1−4.137131​1−4.137131​​=(1+4.137131​)(1−4.137131​)(4.137131​−1)(1−4.137131​)​
(4.137131​−1)(1−4.137131​)=24.137131​−5.137131
(4.137131​−1)(1−4.137131​)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=4.137131​,b=−1,c=1,d=−4.137131​=4.137131​⋅1+4.137131​(−4.137131​)+(−1)⋅1+(−1)(−4.137131​)
Apply minus-plus rules+(−a)=−a,(−a)(−b)=ab=1⋅4.137131​−4.137131​4.137131​−1⋅1+1⋅4.137131​
Simplify 1⋅4.137131​−4.137131​4.137131​−1⋅1+1⋅4.137131​:24.137131​−5.137131
1⋅4.137131​−4.137131​4.137131​−1⋅1+1⋅4.137131​
Add similar elements: 1⋅4.137131​+1⋅4.137131​=24.137131​=24.137131​−4.137131​4.137131​−1⋅1
Apply radical rule: a​a​=a4.137131​4.137131​=4.137131=24.137131​−4.137131−1⋅1
Multiply the numbers: 1⋅1=1=24.137131​−4.137131−1
Subtract the numbers: −4.137131−1=−5.137131=24.137131​−5.137131
=24.137131​−5.137131
(1+4.137131​)(1−4.137131​)=−3.137131
(1+4.137131​)(1−4.137131​)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=1,b=4.137131​=12−(4.137131​)2
Simplify 12−(4.137131​)2:−3.137131
12−(4.137131​)2
Apply rule 1a=112=1=1−(4.137131​)2
(4.137131​)2=4.137131
(4.137131​)2
Apply radical rule: a​=a21​=(4.13713121​)2
Apply exponent rule: (ab)c=abc=4.13713121​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=4.137131
=1−4.137131
Subtract the numbers: 1−4.137131=−3.137131=−3.137131
=−3.137131
=−3.13713124.137131​−5.137131​
Apply the fraction rule: −b−a​=ba​24.137131​−5.137131=−(5.137131−24.137131​)=3.1371315.137131−24.137131​​
u=3.1371315.137131−24.137131​​
u=3.1371315.137131−24.137131​​
u=3.1371315.137131−24.137131​​
Verify Solutions
Find undefined (singularity) points:u=1
Take the denominator(s) of 1−u1+u​ and compare to zero
Solve 1−u=0:u=1
1−u=0
Move 1to the right side
1−u=0
Subtract 1 from both sides1−u−1=0−1
Simplify−u=−1
−u=−1
Divide both sides by −1
−u=−1
Divide both sides by −1−1−u​=−1−1​
Simplifyu=1
u=1
The following points are undefinedu=1
Combine undefined points with solutions:
u=3.1371315.137131−24.137131​​
Substitute back u=tan(2x​)tan(2x​)=3.1371315.137131−24.137131​​
tan(2x​)=3.1371315.137131−24.137131​​
tan(2x​)=3.1371315.137131−24.137131​​:x=2arctan(3.1371315.137131−24.137131​​)+2πn
tan(2x​)=3.1371315.137131−24.137131​​
Apply trig inverse properties
tan(2x​)=3.1371315.137131−24.137131​​
General solutions for tan(2x​)=3.1371315.137131−24.137131​​tan(x)=a⇒x=arctan(a)+πn2x​=arctan(3.1371315.137131−24.137131​​)+πn
2x​=arctan(3.1371315.137131−24.137131​​)+πn
Solve 2x​=arctan(3.1371315.137131−24.137131​​)+πn:x=2arctan(3.1371315.137131−24.137131​​)+2πn
2x​=arctan(3.1371315.137131−24.137131​​)+πn
Multiply both sides by 2
2x​=arctan(3.1371315.137131−24.137131​​)+πn
Multiply both sides by 222x​=2arctan(3.1371315.137131−24.137131​​)+2πn
Simplifyx=2arctan(3.1371315.137131−24.137131​​)+2πn
x=2arctan(3.1371315.137131−24.137131​​)+2πn
x=2arctan(3.1371315.137131−24.137131​​)+2πn
Combine all the solutionsx=2arctan(3.1371315.137131−24.137131​​)+2πn
Show solutions in decimal formx=2⋅0.32845…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(θ)=0.51csc(θ)=(-2sqrt(3))/3cos(x)= 32/50tan(A/2)=sqrt(1.02)(sin(a)+cos(a))^2+(sin(a)+cos(a))^2=2

Frequently Asked Questions (FAQ)

  • What is the general solution for (1+tan(x/2))/(1-tan(x/2))=sqrt(4.137131) ?

    The general solution for (1+tan(x/2))/(1-tan(x/2))=sqrt(4.137131) is x=2*0.32845…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024