Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(3y+60)tan(2y+5)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(3y+60)tan(2y+5)=1

Solution

y=−13+52πn​+10π​,y=−13+52πn​+103π​
+1
Degrees
y=−726.84513…∘+72∘n,y=−690.84513…∘+72∘n
Solution steps
tan(3y+60)tan(2y+5)=1
Subtract 1 from both sidestan(3y+60)tan(2y+5)−1=0
Express with sin, cos
−1+tan(5+2y)tan(60+3y)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−1+cos(5+2y)sin(5+2y)​tan(60+3y)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−1+cos(5+2y)sin(5+2y)​⋅cos(60+3y)sin(60+3y)​
Simplify −1+cos(5+2y)sin(5+2y)​⋅cos(60+3y)sin(60+3y)​:cos(5+2y)cos(60+3y)−cos(5+2y)cos(60+3y)+sin(5+2y)sin(60+3y)​
−1+cos(5+2y)sin(5+2y)​⋅cos(60+3y)sin(60+3y)​
Multiply cos(5+2y)sin(5+2y)​⋅cos(60+3y)sin(60+3y)​:cos(2y+5)cos(3y+60)sin(2y+5)sin(3y+60)​
cos(5+2y)sin(5+2y)​⋅cos(60+3y)sin(60+3y)​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=cos(5+2y)cos(60+3y)sin(5+2y)sin(60+3y)​
=−1+cos(2y+5)cos(3y+60)sin(2y+5)sin(3y+60)​
Convert element to fraction: 1=cos(5+2y)cos(60+3y)1cos(5+2y)cos(60+3y)​=−cos(5+2y)cos(60+3y)1⋅cos(5+2y)cos(60+3y)​+cos(5+2y)cos(60+3y)sin(5+2y)sin(60+3y)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(5+2y)cos(60+3y)−1⋅cos(5+2y)cos(60+3y)+sin(5+2y)sin(60+3y)​
Multiply: 1⋅cos(5+2y)=cos(5+2y)=cos(2y+5)cos(3y+60)−cos(2y+5)cos(3y+60)+sin(2y+5)sin(3y+60)​
=cos(5+2y)cos(60+3y)−cos(5+2y)cos(60+3y)+sin(5+2y)sin(60+3y)​
cos(5+2y)cos(60+3y)−cos(5+2y)cos(60+3y)+sin(5+2y)sin(60+3y)​=0
g(x)f(x)​=0⇒f(x)=0−cos(5+2y)cos(60+3y)+sin(5+2y)sin(60+3y)=0
Rewrite using trig identities
−cos(5+2y)cos(60+3y)+sin(5+2y)sin(60+3y)
Use the Angle Sum identity: cos(s)cos(t)−sin(s)sin(t)=cos(s+t)−cos(s)cos(t)+sin(s)sin(t)=−cos(s+t)=−cos(5+2y+60+3y)
−cos(5+2y+60+3y)=0
Divide both sides by −1
−cos(5+2y+60+3y)=0
Divide both sides by −1−1−cos(5+2y+60+3y)​=−10​
Simplifycos(5+2y+60+3y)=0
cos(5+2y+60+3y)=0
General solutions for cos(5+2y+60+3y)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
5+2y+60+3y=2π​+2πn,5+2y+60+3y=23π​+2πn
5+2y+60+3y=2π​+2πn,5+2y+60+3y=23π​+2πn
Solve 5+2y+60+3y=2π​+2πn:y=−13+52πn​+10π​
5+2y+60+3y=2π​+2πn
Group like terms2y+3y+5+60=2π​+2πn
Add similar elements: 2y+3y=5y5y+5+60=2π​+2πn
Add the numbers: 5+60=655y+65=2π​+2πn
Move 65to the right side
5y+65=2π​+2πn
Subtract 65 from both sides5y+65−65=2π​+2πn−65
Simplify5y=2π​+2πn−65
5y=2π​+2πn−65
Divide both sides by 5
5y=2π​+2πn−65
Divide both sides by 555y​=52π​​+52πn​−565​
Simplify
55y​=52π​​+52πn​−565​
Simplify 55y​:y
55y​
Divide the numbers: 55​=1=y
Simplify 52π​​+52πn​−565​:−13+52πn​+10π​
52π​​+52πn​−565​
Group like terms=−565​+52πn​+52π​​
565​=13
565​
Divide the numbers: 565​=13=13
52π​​=10π​
52π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅5π​
Multiply the numbers: 2⋅5=10=10π​
=−13+52πn​+10π​
y=−13+52πn​+10π​
y=−13+52πn​+10π​
y=−13+52πn​+10π​
Solve 5+2y+60+3y=23π​+2πn:y=−13+52πn​+103π​
5+2y+60+3y=23π​+2πn
Group like terms2y+3y+5+60=23π​+2πn
Add similar elements: 2y+3y=5y5y+5+60=23π​+2πn
Add the numbers: 5+60=655y+65=23π​+2πn
Move 65to the right side
5y+65=23π​+2πn
Subtract 65 from both sides5y+65−65=23π​+2πn−65
Simplify5y=23π​+2πn−65
5y=23π​+2πn−65
Divide both sides by 5
5y=23π​+2πn−65
Divide both sides by 555y​=523π​​+52πn​−565​
Simplify
55y​=523π​​+52πn​−565​
Simplify 55y​:y
55y​
Divide the numbers: 55​=1=y
Simplify 523π​​+52πn​−565​:−13+52πn​+103π​
523π​​+52πn​−565​
Group like terms=−565​+52πn​+523π​​
565​=13
565​
Divide the numbers: 565​=13=13
523π​​=103π​
523π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅53π​
Multiply the numbers: 2⋅5=10=103π​
=−13+52πn​+103π​
y=−13+52πn​+103π​
y=−13+52πn​+103π​
y=−13+52πn​+103π​
y=−13+52πn​+10π​,y=−13+52πn​+103π​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

18^2=8^2+20^2-2*8*20*cos(x)cot(θ)=-pi/63tan^2(x)-3tan(x)=02sin^2(x)+2sin(x)+1=0sin(x)=0.64

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(3y+60)tan(2y+5)=1 ?

    The general solution for tan(3y+60)tan(2y+5)=1 is y=-13+(2pin)/5+pi/(10),y=-13+(2pin)/5+(3pi)/(10)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024