Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x+pi/4)=sqrt(2)cos(x+pi/4)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x+4π​)=2​cos(x+4π​)

Solution

x=20.33983…​+πn
+1
Degrees
x=9.73561…∘+180∘n
Solution steps
sin(x+4π​)=2​cos(x+4π​)
Square both sidessin2(x+4π​)=(2​cos(x+4π​))2
Rewrite using trig identities
sin2(x+4π​)=(2​cos(x+4π​))2
Rewrite using trig identities
sin(x+4π​)
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(x)cos(4π​)+cos(x)sin(4π​)
Simplify sin(x)cos(4π​)+cos(x)sin(4π​):22​sin(x)+2​cos(x)​
sin(x)cos(4π​)+cos(x)sin(4π​)
sin(x)cos(4π​)=22​sin(x)​
sin(x)cos(4π​)
Simplify cos(4π​):22​​
cos(4π​)
Use the following trivial identity:cos(4π​)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
cos(x)sin(4π​)=22​cos(x)​
cos(x)sin(4π​)
Simplify sin(4π​):22​​
sin(4π​)
Use the following trivial identity:sin(4π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
=22​sin(x)​+22​cos(x)​
Apply rule ca​±cb​=ca±b​=22​sin(x)+2​cos(x)​
=22​sin(x)+2​cos(x)​
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(x)cos(4π​)−sin(x)sin(4π​)
Simplify cos(x)cos(4π​)−sin(x)sin(4π​):22​cos(x)−2​sin(x)​
cos(x)cos(4π​)−sin(x)sin(4π​)
cos(x)cos(4π​)=22​cos(x)​
cos(x)cos(4π​)
Simplify cos(4π​):22​​
cos(4π​)
Use the following trivial identity:cos(4π​)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
=22​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​cos(x)​
sin(x)sin(4π​)=22​sin(x)​
sin(x)sin(4π​)
Simplify sin(4π​):22​​
sin(4π​)
Use the following trivial identity:sin(4π​)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
=22​​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=22​sin(x)​
=22​cos(x)​−22​sin(x)​
Apply rule ca​±cb​=ca±b​=22​cos(x)−2​sin(x)​
=22​cos(x)−2​sin(x)​
(22​sin(x)+2​cos(x)​)2=(2​22​cos(x)−2​sin(x)​)2
Simplify (22​sin(x)+2​cos(x)​)2:2(sin(x)+cos(x))2​
(22​sin(x)+2​cos(x)​)2
22​sin(x)+2​cos(x)​=2​sin(x)+cos(x)​
22​sin(x)+2​cos(x)​
Factor out common term 2​=22​(sin(x)+cos(x))​
Cancel 22​(sin(x)+cos(x))​:2​sin(x)+cos(x)​
22​(sin(x)+cos(x))​
Apply radical rule: 2​=221​=2221​(sin(x)+cos(x))​
Apply exponent rule: xbxa​=xb−a1​21221​​=21−21​1​=21−21​sin(x)+cos(x)​
Subtract the numbers: 1−21​=21​=221​sin(x)+cos(x)​
Apply radical rule: 221​=2​=2​sin(x)+cos(x)​
=2​sin(x)+cos(x)​
=(2​sin(x)+cos(x)​)2
Apply exponent rule: (ba​)c=bcac​=(2​)2(sin(x)+cos(x))2​
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=2(sin(x)+cos(x))2​
Simplify (2​22​cos(x)−2​sin(x)​)2:(cos(x)−sin(x))2
(2​22​cos(x)−2​sin(x)​)2
22​cos(x)−2​sin(x)​=2​cos(x)−sin(x)​
22​cos(x)−2​sin(x)​
Factor out common term 2​=22​(cos(x)−sin(x))​
Cancel 22​(cos(x)−sin(x))​:2​cos(x)−sin(x)​
22​(cos(x)−sin(x))​
Apply radical rule: 2​=221​=2221​(cos(x)−sin(x))​
Apply exponent rule: xbxa​=xb−a1​21221​​=21−21​1​=21−21​cos(x)−sin(x)​
Subtract the numbers: 1−21​=21​=221​cos(x)−sin(x)​
Apply radical rule: 221​=2​=2​cos(x)−sin(x)​
=2​cos(x)−sin(x)​
=(2​2​cos(x)−sin(x)​)2
Multiply 2​2​cos(x)−sin(x)​:cos(x)−sin(x)
2​2​cos(x)−sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=2​(cos(x)−sin(x))2​​
Cancel the common factor: 2​=cos(x)−sin(x)
=(cos(x)−sin(x))2
2(sin(x)+cos(x))2​=(cos(x)−sin(x))2
2(sin(x)+cos(x))2​=(cos(x)−sin(x))2
Subtract (cos(x)−sin(x))2 from both sides2−sin2(x)+6cos(x)sin(x)−cos2(x)​=0
g(x)f(x)​=0⇒f(x)=0−sin2(x)+6cos(x)sin(x)−cos2(x)=0
Rewrite using trig identities
6cos(x)sin(x)−1
Use the Double Angle identity: 2sin(x)cos(x)=sin(2x)sin(x)cos(x)=2sin(2x)​=−1+6⋅2sin(2x)​
−1+6⋅2sin(2x)​=0
6⋅2sin(2x)​=3sin(2x)
6⋅2sin(2x)​
Multiply fractions: a⋅cb​=ca⋅b​=2sin(2x)⋅6​
Divide the numbers: 26​=3=3sin(2x)
−1+3sin(2x)=0
Move 1to the right side
−1+3sin(2x)=0
Add 1 to both sides−1+3sin(2x)+1=0+1
Simplify3sin(2x)=1
3sin(2x)=1
Divide both sides by 3
3sin(2x)=1
Divide both sides by 333sin(2x)​=31​
Simplifysin(2x)=31​
sin(2x)=31​
Apply trig inverse properties
sin(2x)=31​
General solutions for sin(2x)=31​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πn2x=arcsin(31​)+2πn,2x=π−arcsin(31​)+2πn
2x=arcsin(31​)+2πn,2x=π−arcsin(31​)+2πn
Solve 2x=arcsin(31​)+2πn:x=2arcsin(31​)​+πn
2x=arcsin(31​)+2πn
Divide both sides by 2
2x=arcsin(31​)+2πn
Divide both sides by 222x​=2arcsin(31​)​+22πn​
Simplifyx=2arcsin(31​)​+πn
x=2arcsin(31​)​+πn
Solve 2x=π−arcsin(31​)+2πn:x=2π​−2arcsin(31​)​+πn
2x=π−arcsin(31​)+2πn
Divide both sides by 2
2x=π−arcsin(31​)+2πn
Divide both sides by 222x​=2π​−2arcsin(31​)​+22πn​
Simplifyx=2π​−2arcsin(31​)​+πn
x=2π​−2arcsin(31​)​+πn
x=2arcsin(31​)​+πn,x=2π​−2arcsin(31​)​+πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into sin(x+4π​)=2​cos(x+4π​)
Remove the ones that don't agree with the equation.
Check the solution 2arcsin(31​)​+πn:True
2arcsin(31​)​+πn
Plug in n=12arcsin(31​)​+π1
For sin(x+4π​)=2​cos(x+4π​)plug inx=2arcsin(31​)​+π1sin(2arcsin(31​)​+π1+4π​)=2​cos(2arcsin(31​)​+π1+4π​)
Refine−0.81649…=−0.81649…
⇒True
Check the solution 2π​−2arcsin(31​)​+πn:False
2π​−2arcsin(31​)​+πn
Plug in n=12π​−2arcsin(31​)​+π1
For sin(x+4π​)=2​cos(x+4π​)plug inx=2π​−2arcsin(31​)​+π1sin(2π​−2arcsin(31​)​+π1+4π​)=2​cos(2π​−2arcsin(31​)​+π1+4π​)
Refine−0.81649…=0.81649…
⇒False
x=2arcsin(31​)​+πn
Show solutions in decimal formx=20.33983…​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

5=7cos(pi/3 t)6cos^2(x)-4=0csc(x)=3.5sin(x)=0,sin(x)=0cos(x)=-7/9 , pi/2 <x<pi

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(x+pi/4)=sqrt(2)cos(x+pi/4) ?

    The general solution for sin(x+pi/4)=sqrt(2)cos(x+pi/4) is x=(0.33983…)/2+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024